Solved

The Curves r1(t)=t,t4,t8\mathbf { r } _ { 1 } ( t ) = \left\langle t , \mathrm { t } ^ { 4 } , \mathrm { t } ^ { 8 } \right\rangle

Question 3

Short Answer

The curves r1(t)=t,t4,t8\mathbf { r } _ { 1 } ( t ) = \left\langle t , \mathrm { t } ^ { 4 } , \mathrm { t } ^ { 8 } \right\rangle and r2(t)=sint,sin5t,t\mathbf { r } _ { 2 } ( t ) = \langle \sin t , \sin 5 t , t \rangle intersects at the origin. Find their angle of intersection correct to the nearest degree.

Correct Answer:

verifed

Verified

Related Questions