Solved

The Curve x=24cos2t,y=tant(12cos2t)x = 2 - 4 \cos ^ { 2 } t , \quad y = \tan t \left( 1 - 2 \cos ^ { 2 } t \right)

Question 65

Multiple Choice

The curve x=24cos2t,y=tant(12cos2t) x = 2 - 4 \cos ^ { 2 } t , \quad y = \tan t \left( 1 - 2 \cos ^ { 2 } t \right) cross itself at some point (x0,y0) \left( x _ { 0 } , y _ { 0 } \right) . Find the equations of both tangent lines at that point.


A) y=x24,y=x22y = \frac { x } { 2 } - 4 , y = - \frac { x } { 2 } - 2
B) y=x2,y=x2y = \frac { x } { 2 } , y = - \frac { x } { 2 }
C) y=x2,y=x4y = \frac { x } { 2 } , y = - \frac { x } { 4 }
D) y=x2+8,y=x2+2y = \frac { x } { 2 } + 8 , y = - \frac { x } { 2 } + 2
E) y=x+2,y=x+2y = x + 2 , y = - x + 2

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions