Solved

Use the Table of Integrals to Evaluate the Integral e4xsin2xdx\int e^{4 x} \sin 2 x d x

Question 107

Multiple Choice

Use the Table of Integrals to evaluate the integral. e4xsin2xdx\int e^{4 x} \sin 2 x d x


A) 15e4xsin2x+110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
B) 15e4xsin2x+110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x+\frac{1}{10} e^{4 x} \cos 2 x+C
C) 15e4xsin2x310e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{3}{10} e^{4 x} \cos 2 x+C
D) 15e4xsin2x110e4xcos2x+C-\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C
E) 15e4xsin2x110e4xcos2x+C\frac{1}{5} e^{4 x} \sin 2 x-\frac{1}{10} e^{4 x} \cos 2 x+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions