Solved

Use a Table of Integrals to Evaluate the Integral x3sin(x2+3)dx\int x^{3} \sin \left(x^{2}+3\right) d x

Question 18

Multiple Choice

Use a table of integrals to evaluate the integral. x3sin(x2+3) dx\int x^{3} \sin \left(x^{2}+3\right) d x


A) 12sin(x2+3) 12x2cos(x2+3) +C\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right) -\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right) +C
B) 12sin(x2+3) 12x2cos(x2+3) +C\frac{1}{2} \sin \left(x^{2}+3\right) -\frac{1}{2} x^{2} \cos \left(x^{2}+3\right) +C
C) 12sin(x2+3) 12x2cos(x2+3) +C-\frac{1}{2} \sin \left(x^{2}+\sqrt{3}\right) -\frac{1}{2} x^{2} \cos \left(x^{2}+\sqrt{3}\right) +C
D) 12sin(x2+3) 12x2cos(x2+3) +C-\frac{1}{2} \sin \left(x^{2}+3\right) -\frac{1}{2} x^{2} \cos \left(x^{2}+3\right) +C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions