Solved

Evaluate the Integral Using the Indicated Trigonometric Substitution x3x2+16dx;x=4tanθ\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x ; x=4 \tan \theta

Question 45

Multiple Choice

Evaluate the integral using the indicated trigonometric substitution. x3x2+16dx;x=4tanθ\int \frac{x^{3}}{\sqrt{x^{2}+16}} d x ; x=4 \tan \theta


A) 32(x+16) 3/216x+16+C\frac{3}{2}(x+16) ^{3 / 2}-16 \sqrt{x+16}+C
B) (x2+16) 3/2x2+16+C\left(x^{2}+16\right) ^{3 / 2}-\sqrt{x^{2}+16}+C
C) 13(x2+16) 3/2x2+16+C\frac{1}{3}\left(x^{2}+16\right) ^{3 / 2}-\sqrt{x^{2}+16}+C
D) 13(x2+16) 3/2+16x2+16+C\frac{1}{3}\left(x^{2}+16\right) ^{3 / 2}+16 \sqrt{x^{2}+16}+C
E) (x2+16) 3/24x2+16+C\left(x^{2}+16\right) ^{3 / 2}-4 \sqrt{x^{2}+16}+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions