Solved

Find the Integral Using an Appropriate Trigonometric Substitution x3x2+36dx\int \frac{x^{3}}{\sqrt{x^{2}+36}} d x

Question 117

Multiple Choice

Find the integral using an appropriate trigonometric substitution. x3x2+36dx\int \frac{x^{3}}{\sqrt{x^{2}+36}} d x


A) 13(x236) 3/2x2+36+C\frac{1}{3}\left(x^{2}-36\right) ^{3 / 2} \sqrt{x^{2}+36}+C
B) 13(x2+72) x2+36+C\frac{1}{3}\left(x^{2}+72\right) \sqrt{x^{2}+36}+C
C) 13(x272) x2+36+C\frac{1}{3}\left(x^{2}-72\right) \sqrt{x^{2}+36}+C
D) 13(x2+36) 3/2x2+36+C\frac{1}{3}\left(x^{2}+36\right) ^{3 / 2} \sqrt{x^{2}+36}+C

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions