Solved

Determine Where the Graph of the Function f(x)=x330xf(x)=x^{3}-30 x Is Concave Upward and Where It Is Concave Downward

Question 126

Multiple Choice

Determine where the graph of the function f(x) =x330xf(x) =x^{3}-30 x is concave upward and where it is concave downward. Also, find all inflection points of the function.


A) CU on (10,10) (-\sqrt{10}, \sqrt{10}) , CD on (,10) (-\infty,-\sqrt{10}) and (10,) (\sqrt{10}, \infty)
IP (10,2010) (-\sqrt{10}, 20 \sqrt{10}) and (10,2010) (\sqrt{10},-20 \sqrt{10})
B) CU on (0,) (0, \infty) , CD on (,0) (-\infty, 0) ,
IP (0,0) (0,0)
C) CU on (10,) (-\sqrt{10}, \infty) , CD on (,10) (-\infty,-\sqrt{10}) ,
IP (10,2010) (-\sqrt{10}, 20 \sqrt{10})
D) CU on (10,) (\sqrt{10}, \infty) , CD on (,10) (-\infty, \sqrt{10}) ,
IP (10,2010) (\sqrt{10},-20 \sqrt{10})

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions