Solved

Use Logarithmic Differentiation to Find the Derivative of the Function y=x2+1x219y=\sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}

Question 142

Multiple Choice

Use logarithmic differentiation to find the derivative of the function. y=x2+1x219y=\sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}


A) y=9x(x41) x2+1x219y^{\prime}=-\frac{9 x}{\left(x^{4}-1\right) } \sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}
B) y=9x4x41x2+1x219y^{\prime}=\frac{9 x}{4 x^{4}-1} \sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}
C) y=36xx41x2+1x219y^{\prime}=-\frac{36 x}{x^{4}-1} \sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}
D) y=36xx41y^{\prime}=-\frac{36 x}{x^{4}-1}
E) y=4x9(x41) x2+1x219y^{\prime}=-\frac{4 x}{9\left(x^{4}-1\right) } \sqrt[9]{\frac{x^{2}+1}{x^{2}-1}}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions