Solved

Find d5dx5(x4lnx)\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right)
A) d5dx5(x4lnx)=3x4\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right)=\frac{3}{x^{4}} B) d5dx5(x4lnx)=6x2\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right)=\frac{6}{x^{2}}

Question 56

Multiple Choice

Find d5dx5(x4lnx) \frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) .


A) d5dx5(x4lnx) =3x4\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) =\frac{3}{x^{4}}
B) d5dx5(x4lnx) =6x2\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) =\frac{6}{x^{2}}
C) d5dx5(x4lnx) =1x\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) =\frac{1}{x}
D) d5dx5(x4lnx) =6x4\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) =\frac{6}{x^{4}}
E) d5dx5(x4lnx) =24x\frac{d^{5}}{d x^{5}}\left(x^{4} \ln x\right) =\frac{24}{x}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions