Solved

Find the Derivative of the Function y=(3x+1)9(x46)3y=(3 x+1)^{9}\left(x^{4}-6\right)^{3} A) y=27(3x+1)8(x46)3+12x(3x+1)9(x46)2y^{\prime}=27(3 x+1)^{8}\left(x^{4}-6\right)^{3}+12 x(3 x+1)^{9}\left(x^{4}-6\right)^{2}

Question 43

Multiple Choice

Find the derivative of the function. y=(3x+1) 9(x46) 3y=(3 x+1) ^{9}\left(x^{4}-6\right) ^{3}


A) y=27(3x+1) 8(x46) 3+12x(3x+1) 9(x46) 2y^{\prime}=27(3 x+1) ^{8}\left(x^{4}-6\right) ^{3}+12 x(3 x+1) ^{9}\left(x^{4}-6\right) ^{2}
B) y=27(3x+1) 8(x46) 3+(3x+1) 9(x46) 2y^{\prime}=27(3 x+1) ^{8}\left(x^{4}-6\right) ^{3}+(3 x+1) ^{9}\left(x^{4}-6\right) ^{2}
C) y=27(3x+1) 8(x46) 3+12x3(3x+1) 9(x46) 2y^{\prime}=27(3 x+1) ^{8}\left(x^{4}-6\right) ^{3}+12 x^{3}(3 x+1) ^{9}\left(x^{4}-6\right) ^{2}
D) y=(12x+27) (3x+1) 9(x46) 3y^{\prime}=(12 x+27) (3 x+1) ^{9}\left(x^{4}-6\right) ^{3}
E) y=(x+1) 8(x46) 3+12x(3x+1) 9(x36) 2y^{\prime}=(x+1) ^{8}\left(x^{4}-6\right) ^{3}+12 x(3 x+1) ^{9}\left(x^{3}-6\right) ^{2}

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions