Solved

Solve the Inequality t+122\left| t + \frac { 1 } { 2 } \right| \geq 2

Question 55

Multiple Choice

Solve the inequality t+122\left| t + \frac { 1 } { 2 } \right| \geq 2 .


A)
t(,2][3,) t \in ( - \infty , - 2 ] \cup [ 3 , \infty )
B)
t(,12][32,) t \in \left( - \infty , - \frac { 1 } { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)
C)
t(,32][32,) t \in \left( - \infty , - \frac { 3} { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)
D)
 Solve the inequality  \left| t + \frac { 1 } { 2 } \right| \geq 2  .  A)    t \in ( - \infty , - 2 ] \cup [ 3 , \infty )    B)    t \in \left( - \infty , - \frac { 1 } { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)    C)    t \in \left( - \infty , - \frac { 3} { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)    D)      E)    t \in \left( - \infty , - \frac { 5 } { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)
E)
t(,52][32,) t \in \left( - \infty , - \frac { 5 } { 2 } \right] \cup \left[ \frac { 3 } { 2 } , \infty \right)

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions