Multiple Choice
The fundamental frequency of a vibrating string is f1. If the tension in the string is doubled, the fundamental frequency becomes
A) /2
B) 11eaa4be_8550_d4cd_9e4a_9b9f5c46c44e_TB6080_11 11eaa4be_8550_fbde_9e4a_d7ed8083361c_TB6080_11
C) 11eaa4be_8550_d4cd_9e4a_9b9f5c46c44e_TB6080_11
D) 11eaa4be_8550_fbdf_9e4a_25d12c5de7d6_TB6080_11
E) 211eaa4be_8550_d4cd_9e4a_9b9f5c46c44e_TB6080_11
Correct Answer:

Verified
Correct Answer:
Verified
Q34: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6080/.jpg" alt=" The frequency spectrum
Q35: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6080/.jpg" alt=" The figure shows
Q37: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6080/.jpg" alt=" The figure represents
Q39: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6080/.jpg" alt=" The figure shows
Q41: <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6080/.jpg" alt="
Q51: A vibrating tuning fork of frequency 1080
Q59: A vibrating tuning fork of frequency 640
Q71: Two waves with the same frequency and
Q78: What is the third harmonic of an
Q82: A string fixed at both ends is