Multiple Choice
The following function is a counterexample for the converse of the Intermediate Value Theorem, which states:
If assumes all the values between
and
in the interval
, then
is continuous on
:
A) on
B) on
C) on
D) on
E) on
Correct Answer:

Verified
Correct Answer:
Verified
Q62: Find <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Find such
Q63: Compute the following limits:<br>A) <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Compute
Q64: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Let be
Q65: Which of the following statements show that
Q66: At each point of discontinuity state whether
Q68: Find <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Find ."
Q69: Calculate the limits<br>A) <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Calculate the
Q70: Determine the points at which the following
Q71: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Let denote
Q72: Evaluate the limits using the Squeeze Theorem,