Multiple Choice
The following function is a counterexample for the converse of the Intermediate Value Theorem, which states:
If assumes all the values between
and
in the interval
, then
is continuous on
:
A) for
,
,
B) on
C) on
D) on
E) A and C are correct.
Correct Answer:

Verified
Correct Answer:
Verified
Q5: Determine the points where the function is
Q6: The greatest integer function is defined by
Q7: The polynomial <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="The polynomial
Q8: The position of a particle is given
Q9: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Let denote
Q11: Determine whether the following statement is correct.
Q12: Show that <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Show that
Q13: Compute the following one-sided limits:<br>A) <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg"
Q14: Find <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Find ."
Q15: Evaluate the limit <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB5596/.jpg" alt="Evaluate the