Multiple Choice
Find the critical point(s) of the function. Then use the second derivative test to classify the nature of each point, if possible. Finally, determine the relative extrema of the function.
A) (5, - 4) is the critical point, the function has neither a relative maximum nor a relative minimum at this point
B) (5, - 4) is the point of maximum, 18 is the relative maximum
C) (5, - 4) is the point of minimum, - 18 is the relative minimum
D) (5, - 4) is the critical point, it is impossible to determine the relative extrema of the function
E) no critical points
Correct Answer:

Verified
Correct Answer:
Verified
Q126: An open rectangular box having a surface
Q127: Find the domain of the function. f(u,
Q128: Find the critical point(s) of the function.
Q129: Evaluate the double integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Evaluate
Q130: Find the critical point(s) of the function.
Q132: Find the critical point(s) of the function.
Q133: Find the domain of the function. f(m,
Q134: Evaluate the double integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Evaluate
Q135: Evaluate the double integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Evaluate
Q136: Evaluate the first partial derivatives of the