Multiple Choice
Find the critical point(s) of the function. Then use the second derivative test to classify the nature of each point, if possible. Finally, determine the relative extrema of the function.
A) (1, 5) and (2, 5) ; saddle point: f(1, 5) = - 46; relative minimum value: f(2, 5) = - 47
B) (2, 5) ; relative maximum value: f(2, 5) = 47
C) (1, 5) ; saddle point: f(1, 5) = - 46
D) (1, 5) and (2, 5) ; relative maximum value: f(1, 5) = - 47; relative minimum value: f(2, 5) = 46
E) there are no critical points
Correct Answer:

Verified
Correct Answer:
Verified
Q44: Because of new, lower standards, experts in
Q45: The total daily profit (in dollars) realized
Q46: Minimize the function <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Minimize the
Q47: Evaluate the double integral <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Evaluate
Q48: Determine whether the statement is true or
Q50: Evaluate the first partial derivatives of the
Q51: Let <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Let Compute
Q52: Find the domain of the function.<br>f(m, n)
Q53: Minimize the function <img src="https://d2lvgg3v3hfg70.cloudfront.net/TB6026/.jpg" alt="Minimize the
Q54: An auxiliary electric power station will serve