Solved

Find the Terms in the Maclaurin Series for the Function f(x)=ln(1+x)f ( x ) = \ln ( 1 + x )

Question 41

Multiple Choice

Find the terms in the Maclaurin series for the function f(x) =ln(1+x) f ( x ) = \ln ( 1 + x ) , as far as the term in x3x ^ { 3 } .


A) 1x+x2x31 - x + x ^ { 2 } - x ^ { 3 }
B) xx2+x3x - x ^ { 2 } + x ^ { 3 }
C) 1x+12x216x31 - x + \frac { 1 } { 2 } x ^ { 2 } - \frac { 1 } { 6 } x ^ { 3 }
D) x12x2+13x3x - \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 3 } x ^ { 3 }
E) 1+12x+23x2+56x31 + \frac { 1 } { 2 } x + \frac { 2 } { 3 } x ^ { 2 } + \frac { 5 } { 6 } x ^ { 3 }
F) x+12x2+16x3x + \frac { 1 } { 2 } x ^ { 2 } + \frac { 1 } { 6 } x ^ { 3 }
G) 1+x2+16x2+124x31 + \frac { x } { 2 } + \frac { 1 } { 6 } x ^ { 2 } + \frac { 1 } { 24 } x ^ { 3 }
H) x124x2+1120x3x - \frac { 1 } { 24 } x ^ { 2 } + \frac { 1 } { 120 } x ^ { 3 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions