Solved

Which One of the Following Series Diverges?
A) n=1(3π)n\sum _ { n = 1 } ^ { \infty } \left( \frac { 3 } { \pi } \right) ^ { n }

Question 62

Multiple Choice

Which one of the following series diverges?


A) n=1(3π) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 3 } { \pi } \right) ^ { n }
B) n=21n3+1\sum _ { n = 2 } ^ { \infty } \frac { 1 } { \sqrt { n ^ { 3 } + 1 } }
C) n=4(1) nlnn\sum _ { n = 4 } ^ { \infty } \frac { ( - 1 ) ^ { n } } { \ln n }
D) n=23nlnn\sum _ { n = 2 } ^ { \infty } \frac { 3 } { n \ln n }
E) n=1(1n1n+1) \sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { n } - \frac { 1 } { n + 1 } \right)
F) n=1(2e) n\sum _ { n = 1 } ^ { \infty } \left( \frac { 2 } { e } \right) ^ { n }
G) n=13n2lnn\sum _ { n = 1 } ^ { \infty } \frac { 3 } { n ^ { 2 } \ln n }
H) n=13n3/2\sum _ { n = 1 } ^ { \infty } 3 n ^ { - 3 / 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions