Solved

Which of the Three Series Below Converges?
1) n=1(1n45+2n3)\sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt [ 5 ] { n ^ { 4 } } } + \frac { 2 } { n ^ { 3 } } \right)

Question 258

Multiple Choice

Which of the three series below converges?
1) n=1(1n45+2n3) \sum _ { n = 1 } ^ { \infty } \left( \frac { 1 } { \sqrt [ 5 ] { n ^ { 4 } } } + \frac { 2 } { n ^ { 3 } } \right)
2) n=1lnnn2\sum _ { n = 1 } ^ { \infty } \frac { \ln n } { n ^ { 2 } }
3) n=1sin(1/n) n\sum _ { n = 1 } ^ { \infty } \frac { \sin ( 1 / n ) } { n }


A) None
B) 1
C) 2
D) 3
E) 1, 2
F) 1, 3
G) 2, 3
H) 1, 2, 3

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions