Solved

Let X Be a Continuous Random Variable with Density Function f(X)={cecX if x00 otherwise f ( X ) = \left\{ \begin{array} { l l } c \cdot e ^ { - c X } & \text { if } x \geq 0 \\0 & \text { otherwise }\end{array} \right.

Question 79

Multiple Choice

Let X be a continuous random variable with density function f(X) ={cecX if x00 otherwise f ( X ) = \left\{ \begin{array} { l l } c \cdot e ^ { - c X } & \text { if } x \geq 0 \\0 & \text { otherwise }\end{array} \right. If the median of this distribution is 13\frac { 1 } { 3 } , then c is:


A) 13\frac { 1 } { 3 } ln12\ln \frac { 1 } { 2 }
B) 13\frac { 1 } { 3 } ln2\ln 2
C) 2 ln32\ln \frac { 3 } { 2 }
D) 3ln23 \ln 2
E) 3
F) 13\frac { 1 } { 3 }
G) 2ln3ln22 \cdot \frac { \ln 3 } { \ln 2 }
H) 3 ln12\ln \frac { 1 } { 2 }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions