Solved

Find the Partial Fraction Expansion of the Rational Function x2(x1)(x2+1)\frac { x ^ { 2 } } { ( x - 1 ) \left( x ^ { 2 } + 1 \right) }

Question 37

Multiple Choice

Find the partial fraction expansion of the rational function: x2(x1) (x2+1) \frac { x ^ { 2 } } { ( x - 1 ) \left( x ^ { 2 } + 1 \right) } .


A) 12(x1) +12(x2+1) \frac { 1 } { 2 ( x - 1 ) } + \frac { 1 } { 2 \left( x ^ { 2 } + 1 \right) }
B) 12(x1) +x2(x2+1) \frac { 1 } { 2 ( x - 1 ) } + \frac { x } { 2 \left( x ^ { 2 } + 1 \right) }
C) 1(x1) +x+1(x2+1) \frac { 1 } { ( x - 1 ) } + \frac { x + 1 } { \left( x ^ { 2 } + 1 \right) }
D) 1(x1) +1(x2+1) \frac { 1 } { ( x - 1 ) } + \frac { 1 } { \left( x ^ { 2 } + 1 \right) }
E) 12(x1) +x+12(x2+1) \frac { 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
F) 12(x1) +x+12(x2+1) \frac { - 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
G) 1(x1) +x(x2+1) \frac { 1 } { ( x - 1 ) } + \frac { x } { \left( x ^ { 2 } + 1 \right) }
H) 12(x1) x+12(x2+1) \frac { 1 } { 2 ( x - 1 ) } - \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions