Solved

Use Stokes' Theorem to Evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S }

Question 88

Short Answer

Use Stokes' Theorem to evaluate ScurlFdS\iint _ { S } \operatorname { curl } \mathbf { F } \cdot d \mathbf { S } where F(x,y,z)=(x+tan1yz)i+y2zj+zk\mathbf { F } ( x , y , z ) = \left( x + \tan ^ { - 1 } y z \right) \mathbf { i } + y ^ { 2 } z \mathbf { j } + z \mathbf { k } and S is the part of the hemisphere z=9y2z2z = \sqrt { 9 - y ^ { 2 } - z ^ { 2 } } that lies inside the cylinder y2+z2=4y ^ { 2 } + z ^ { 2 } = 4 , oriented in the direction of the positive x-axis.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions