Solved

Use the Midpoint Rule to Estimate R(x2+y2)dA\iint _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A

Question 87

Essay

Use the Midpoint Rule to estimate R(x2+y2)dA\iint _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A over R={(x,y)0x2,0y2}R = \{ ( x , y ) \mid 0 \leq x \leq 2,0 \leq y \leq 2 \} partitioned by the lines x = 1 and y = 1. Then estimate the average value of f(x,y)=x2+y2f ( x , y ) = x ^ { 2 } + y ^ { 2 } over R.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions