Solved

Two Traveling Sinusoidal Waves Interfere to Produce a Wave with the Mathematical

Question 60

Multiple Choice

Two traveling sinusoidal waves interfere to produce a wave with the mathematical form  Two traveling sinusoidal waves interfere to produce a wave with the mathematical form   If the value of  \phi  is appropriately chosen, the two waves might be: A)  y<sub>1</sub>(x,t)  = (y<sub>m</sub>/3)  sin (kx +   \omega  t)  and y<sub>2</sub>(x,t)  = (y<sub>m</sub>/3)  sin (kx +   \omega  t +  \phi  )  B)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t +  \phi  )  C)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx -   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +  \omega  t +  \phi  )  D)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin [(kx/2)  - (  \omega  t/2) ] and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin [(kx/2)  - (  \omega  t/2)  +  \phi  ] E)  y<sub>1</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +   \omega  t)  and y<sub>2</sub>(x,t)  = 0.7y<sub>m</sub> sin (kx +   \omega  t +  \phi  )  If the value of ϕ\phi is appropriately chosen, the two waves might be:


A) y1(x,t) = (ym/3) sin (kx + ω \omega t) and y2(x,t) = (ym/3) sin (kx + ω \omega t + ϕ\phi )
B) y1(x,t) = 0.7ym sin (kx - ω \omega t) and y2(x,t) = 0.7ym sin (kx - ω \omega t + ϕ\phi )
C) y1(x,t) = 0.7ym sin (kx - ω \omega t) and y2(x,t) = 0.7ym sin (kx + ω \omega t + ϕ\phi )
D) y1(x,t) = 0.7ym sin [(kx/2) - ( ω \omega t/2) ] and y2(x,t) = 0.7ym sin [(kx/2) - ( ω \omega t/2) + ϕ\phi ]
E) y1(x,t) = 0.7ym sin (kx + ω \omega t) and y2(x,t) = 0.7ym sin (kx + ω \omega t + ϕ\phi )

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions