Solved

If Ut Refers to the Error Term at Time 'T

Question 19

Multiple Choice

If ut refers to the error term at time 't' and yt - 1 refers to the dependent variable at time 't - 1', for an AR(1) process to be homoskedastic, it is required that:


A) Var(ut|yt - 1) > Var(yt|yt-1) = If u<sub>t</sub> refers to the error term at time 't' and y<sub>t -</sub> <sub>1</sub> refers to the dependent variable at time 't - 1', for an AR(1)  process to be homoskedastic, it is required that: A) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  > Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. B) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  >   <sup>2</sup>. C)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  < Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. D)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. 2.
B) Var(ut|yt - 1) = Var(yt|yt-1) > If u<sub>t</sub> refers to the error term at time 't' and y<sub>t -</sub> <sub>1</sub> refers to the dependent variable at time 't - 1', for an AR(1)  process to be homoskedastic, it is required that: A) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  > Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. B) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  >   <sup>2</sup>. C)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  < Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. D)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. 2.
C) Var(ut|yt - 1) < Var(yt|yt-1) =
If u<sub>t</sub> refers to the error term at time 't' and y<sub>t -</sub> <sub>1</sub> refers to the dependent variable at time 't - 1', for an AR(1)  process to be homoskedastic, it is required that: A) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  > Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. B) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  >   <sup>2</sup>. C)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  < Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. D)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. 2.
D) Var(ut|yt - 1) = Var(yt|yt-1) =
If u<sub>t</sub> refers to the error term at time 't' and y<sub>t -</sub> <sub>1</sub> refers to the dependent variable at time 't - 1', for an AR(1)  process to be homoskedastic, it is required that: A) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  > Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. B) Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  >   <sup>2</sup>. C)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  < Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. D)  Var(u<sub>t</sub>|y<sub>t -</sub> <sub>1</sub>)  = Var(y<sub>t</sub>|y<sub>t-</sub><sub>1</sub>)  =   <sup>2</sup>. 2.

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions