Solved

The Black-Scholes-Merton Model for European Puts,obtained by Applying Put-Call Parity

Question 58

Multiple Choice

The Black-Scholes-Merton model for European puts,obtained by applying put-call parity to the Black-Scholes-Merton model for European calls,is customarily expressed by which of the following:


A) P=XeIeTN(d2) S0 N(d1) \mathrm { P } = \mathrm { Xe } ^ { - \mathrm { I } _ { \mathrm { e } } \mathrm { T } } \mathrm { N } \left( - \mathrm { d } _ { 2 } \right) - \mathrm { S } _ { 0 } \mathrm {~N} \left( - \mathrm { d } _ { 1 } \right)
B) P=X(1+r) TN(d2) S0 N(d1) \mathrm { P } = \mathrm { X } ( 1 + \mathrm { r } ) ^ { - \mathrm { T } } \mathrm { N } \left( - \mathrm { d } _ { 2 } \right) - \mathrm { S } _ { 0 } \mathrm {~N} \left( - \mathrm { d } _ { 1 } \right)
C) P=X(1+r) TN(d1) S0 N(d2) \mathrm { P } = \mathrm { X } ( 1 + \mathrm { r } ) ^ { - \mathrm { T } } \mathrm { N } \left( - \mathrm { d } _ { 1 } \right) - \mathrm { S } _ { 0 } \mathrm {~N} \left( - \mathrm { d } _ { 2 } \right)
D) P=XeIeTN(d1) S0 N(d2) \mathrm { P } = \mathrm { Xe } ^ { - \mathrm { I } _ { \mathrm { e } } \mathrm { T } } \mathrm { N } \left( - \mathrm { d } _ { 1 } \right) - \mathrm { S } _ { 0 } \mathrm {~N} \left( - \mathrm { d } _ { 2 } \right)
E) none of the above

Correct Answer:

verifed

Verified

Unlock this answer now
Get Access to more Verified Answers free of charge

Related Questions