Deck 16: Integrating Functions of Several Variables

Full screen (f)
exit full mode
Question
Set up but do not evaluate a (multiple)integral that gives the volume of the solid bounded above by the sphere x2+y2+z2=2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 and below by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 111x21x2x2+y22x2y2dxdydz\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d x d y d z
B) 111x21x2x2y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - x ^ { 2 } - y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 1101x2x2+y22x2y2\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{2-x^{2}-y^{2}}}dzdydx d z d y d x
D) 111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
E) 011x21x2x2+y22x2y2dzdydx\int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
Use Space or
up arrow
down arrow
to flip the card.
Question
Estimate \int R f(x, y)dA using the table of values below, where R is the rectangle 0 \le x \le 4, 0 \le y \le 6
yx036023426434181412\begin{array}{c}y\\x\begin{array}{cccc}&0 & 3 & 6\\0 & 2 & 3 & 4 \\2 & 6 & 4 & 3 \\4 & 18 & 14 & 12\end{array}\end{array}
Question
Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px> and Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px> respectively.Evaluate Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  <div style=padding-top: 35px>
Question
Consider the integral 159x45f(x,y)dydx\int _ { 1 } ^ { 5 } \int _ { 9 x } ^ { 45 } f ( x , y ) d y d x Rewrite the integral with the integration performed in the opposite order.

A) 9xA51y/9f(x,y)dxdy\int _ { 9 x } ^ { A 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
B) 9451y/9f(x,y)dydx\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d y d x
C) 9451y/9f(x,y)dxdy\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
D) 94510yf(x,y)dxdy\int _ { 9 } ^ { 45 } \int _ { 1 } ^ { 0 y } f ( x , y ) d x d y
Question
Evaluate the iterated integral. Evaluate the iterated integral.  <div style=padding-top: 35px>
Question
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 0603cos4ysin(4x+5)dxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \cos 4 y \sin ( 4 x + 5 ) d x d y
Question
Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate   exactly and then give an answer rounded to 4 decimal places.<div style=padding-top: 35px> exactly and then give an answer rounded to 4 decimal places.
Question
Evaluate the iterated integral. Evaluate the iterated integral.  <div style=padding-top: 35px>
Question
Reverse the order of integration for the following integral. 13x294x12f(x,y)dydx\int _ { 1 } ^ { 3 } \int _ { x ^ { 2 } - 9 } ^ { 4 x - 12 } f ( x , y ) d y d x

A) 08(y+12)/4y+9f(x,y)dxdy\int _ { 0 } ^ { 8 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
B) 80(y+12)/4y+9f(x,y)dydx\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d y d x
C) 80(y+12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
D) 80y+9(y+12)/4f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { \sqrt { y + 9 } } ^ { ( y + 12 ) / 4 } f ( x , y ) d x d y
E) 80(y12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y - 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
Question
Evaluate Evaluate   by first reversing the order of integration.<div style=padding-top: 35px> by first reversing the order of integration.
Question
Let f(x, y)be a positive function of x and y which is independent of x, that is, f(x, y)= g(y)for some one-variable function g.Suppose that 03g(x)dx=10\int _ { 0 } ^ { 3 } g ( x ) d x = 10 and 010g(x)dx=1\int _ { 0 } ^ { 10 } g ( x ) d x = 1 .
Find RfdA\int _ { R } f d A , where R is the rectangle 0 \le x \le 3, 0 \le y \le 10.
Question
Let R1 be the region 0 \le x \le 3, -2 \le y \le 4, and let R2 be the region 3 \le x \le 5, -2 \le y \le 4.Suppose that the average value of f over R1 is 6 and the average value over R2 is 7.
Find the average value of f over R, 0x5,2y20 \leq x \leq 5 , - 2 \leq y \leq 2 .
Question
True or false?
If f is any two-variable function, then RfdA=2SfdA\int _ { R } f d A = 2 \int _ { S } f d A , where R is the rectangle 0 \le x \le 2, 0 \le y \le 1 and S is the square 0 \le x, y \le 1.
Question
Find the volume of the region under the graph of Find the volume of the region under the graph of   and above the region  <div style=padding-top: 35px> and above the region Find the volume of the region under the graph of   and above the region  <div style=padding-top: 35px>
Question
Find a region R such that double integral R(2x2y2)dA\int _ { R } \left( 2 - x ^ { 2 } - y ^ { 2 } \right) d A has the largest value.

A) x2y22x ^ { 2 } - y ^ { 2 } \leq 2
B) x2y22x ^ { 2 } - y ^ { 2 } \geq 2
C) x2+y22x ^ { 2 } + y ^ { 2 } \leq 2
D) x2+y22x ^ { 2 } + y ^ { 2 } \geq 2
Question
Find the volume under the graph of Find the volume under the graph of   lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).<div style=padding-top: 35px> lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).
Question
Reverse the order of integration for the following integral. 02y28yf(x,y)c2xdy\int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { \sqrt { 8 y } } f ( x , y ) c ^ { 2 } x d y

A) 02x2/8xf(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
B) 04x2/8xf(x,y)dxdy\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d x d y
C) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { x } f ( x , y ) d y d x
D) 048x2xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { 8 x ^ { 2 } } ^ { \sqrt { x } } f ( x , y ) d y d x
E) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
Question
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 010z0yx2y5z5dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { z } \int _ { 0 } ^ { y } x ^ { 2 } y ^ { 5 } z ^ { 5 } d x d y d z
Question
The function The function   has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.<div style=padding-top: 35px> has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.
Question
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 340yy2exydxdy\int _ { 3 } ^ { 4 } \int _ { 0 } ^ { y } y ^ { 2 } e ^ { x y } d x d y

A) 12(7e9+e16)\frac { 1 } { 2 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
B) 12(25e9+e16)\frac { 1 } { 2 } \left( 25 - e ^ { 9 } + e ^ { 16 } \right)
C) 12(7+e9e16)\frac { 1 } { 2 } \left( - 7 + e ^ { 9 } - e ^ { 16 } \right)
D) 13(7e9+e16)\frac { 1 } { 3 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
Question
Set up an iterated integral for Wf(x,y,z)dV\int _ { W } f ( x , y , z ) d V , where W is the solid region bounded below by the rectangle 0 \le x \le 3, 0 \le y \le 1 and above by the surface z2+y2=1z ^ { 2 } + y ^ { 2 } = 1

A) Wf(x,y,z)dV=030101y2f(x,y,z)dzcxαdy\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z c x \alpha d y
B) Wf(x,y,z)dV=030101y2f(x,y,z)dydzdx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d z d x
C) Wf(x,y,z)dV=030101y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
D) Wf(x,y,z)dV=03011y21y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
E) Wf(x,y,z)dV=03011y21y2f(x,y,z)dydxdz\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d x d z
Question
A cylindrical tube of radius 2cm and length 3cm contains a gas.As the tube spins around its axis, the density of the gas increases as you get farther from the axis.The density, D, at a distance of r cm from the axis is D(r)= 1 +9 r gm/cc.
Write a triple integral representing the total mass of the gas in the tube and evaluate the integral.
Question
Set up (but do not evaluate)an iterated integral to compute the mass of the solid paraboloid bounded by z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z = 1, if the density is given by δ\delta (x, y, z)= z2.

A)  Mass =111x21x2x2+y21z2dzdxdy\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d x d y
B)  Mass =0101x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
C) Mass=111x21x201z2dzdydx\operatorname { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { 0 } ^ { 1 } z ^ { 2 } d z d y d x
D)  Mass =111x21x2x2+y21z2dzdydx\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
E)  Mass =011x21x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
Question
Compute the area of the flower-like region bounded by r = 6 + 3 cos (8 θ\theta ).
Question
Find the triple integral of the function f(x, y, z)= xy sin (18yz)over the rectangular box 0 \le x \le π\pi , 0 \le y \le 1, 0 \le z \le π\pi /6.
Question
Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  <strong>Set up the three-dimensional integral  \int _ { R } y d V  where R is the ice-cream cone enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.  </strong> A)  \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)  \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)  \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x  <div style=padding-top: 35px>

A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x
Question
Consider the volume between a cone centered along the positive z-axis, with vertex at the origin and containing the point (0, 1, 1), and a sphere of radius 3 centered at the origin.
Write a triple integral which represents this volume and evaluate it.Use spherical coordinates.
Question
Calculate the following integral: Calculate the following integral:  <div style=padding-top: 35px>
Question
Calculate the following integral: Calculate the following integral:   where R is the shaded region shown below. ·  <div style=padding-top: 35px> where R is the shaded region shown below.
· Calculate the following integral:   where R is the shaded region shown below. ·  <div style=padding-top: 35px>
Question
Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass.<div style=padding-top: 35px> .If the density of this solid at a point (x, y, z)is given by Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass.<div style=padding-top: 35px> , find its mass.
Question
A solid is bounded below by the triangle z = 0, x \ge 0, y \ge 0, x + y \le 1 and above by the plane z = x + 6y + 2.If the density of the solid is given by δ\delta (x, y, z)= z, find its mass.
Question
Evaluate Evaluate   Provide an exact answer.<div style=padding-top: 35px> Provide an exact answer.
Question
For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region. For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region.  <div style=padding-top: 35px>
Question
Evaluate the integral Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  <div style=padding-top: 35px> , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  <div style=padding-top: 35px>
Question
Let R be the ice-cream cone lying inside the sphere Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R.<div style=padding-top: 35px> and inside the cone Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R.<div style=padding-top: 35px> .Find the center of mass of R.
Question
Evaluate exactly the integral Evaluate exactly the integral   , where R is the region shown below.  <div style=padding-top: 35px> , where R is the region shown below. Evaluate exactly the integral   , where R is the region shown below.  <div style=padding-top: 35px>
Question
Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it). Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it).  <div style=padding-top: 35px>
Question
Evaluate the iterated integral Evaluate the iterated integral  <div style=padding-top: 35px>
Question
Find the volume of the solid bounded by the paraboloid Find the volume of the solid bounded by the paraboloid   and the plane z = 1.<div style=padding-top: 35px> and the plane z = 1.
Question
Convert the integral Convert the integral   to polar coordinates and hence evaluate it exactly.<div style=padding-top: 35px> to polar coordinates and hence evaluate it exactly.
Question
Let x and y have joint density function Let x and y have joint density function   Find the probability that x > y +0.4.<div style=padding-top: 35px> Find the probability that x > y +0.4.
Question
Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region. <strong>Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region.  </strong> A)spherical coordinates B)cylindrical coordinates C)rectangular coordinates D)None of the above. <div style=padding-top: 35px>

A)spherical coordinates
B)cylindrical coordinates
C)rectangular coordinates
D)None of the above.
Question
Evaluate the integral Evaluate the integral   in spherical coordinates.<div style=padding-top: 35px> in spherical coordinates.
Question
Evaluate Evaluate   where W is the first octant portion of the ball of radius 3 centered at the origin.<div style=padding-top: 35px> where W is the first octant portion of the ball of radius 3 centered at the origin.
Question
Let W be the region between the cylinders Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px> and Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px> in the first octant and under the plane z = 1.Evaluate Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  <div style=padding-top: 35px>
Question
Rewrite the integral Rewrite the integral   in spherical coordinates.You do not have to evaluate the integral.<div style=padding-top: 35px> in spherical coordinates.You do not have to evaluate the integral.
Question
Evaluate the integral by interchanging the order of integration. Evaluate the integral by interchanging the order of integration.   .<div style=padding-top: 35px> .
Question
Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that 0.5 \le x \le 0.6.
Question
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A
Question
The joint density function for x, y is given by The joint density function for x, y is given by   Find the probability that (x, y)satisfies  <div style=padding-top: 35px> Find the probability that (x, y)satisfies The joint density function for x, y is given by   Find the probability that (x, y)satisfies  <div style=padding-top: 35px>
Question
An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by   What is the probability that the arrow strikes within 0.45 feet of the center of the target.<div style=padding-top: 35px> What is the probability that the arrow strikes within 0.45 feet of the center of the target.
Question
Find the mass of the solid cylinder Find the mass of the solid cylinder   with density function  <div style=padding-top: 35px> with density function Find the mass of the solid cylinder   with density function  <div style=padding-top: 35px>
Question
Evaluate the integral Evaluate the integral   .Give your answer to two decimal places.<div style=padding-top: 35px> .Give your answer to two decimal places.
Question
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by,0x8,0y80 otherwise p ( x , y ) = \left\{ \begin{array} { c l } a x + b y , & 0 \leq x \leq 8,0 \leq y \leq 8 \\0 & \text { otherwise }\end{array} \right.

A) a+b=1256a + b = \frac { 1 } { 256 }
B) a+b=132a + b = \frac { 1 } { 32 }
C) a+b<1256a + b < \frac { 1 } { 256 }
D)a=b
E) a+b=1512a + b = \frac { 1 } { 512 }
Question
Consider the change of variables x = s + 5t, y = s - 3t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 5t, y = s - 3t. Find the absolute value of the Jacobian   .<div style=padding-top: 35px> .
Question
Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2)dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A

A)240 π\pi
B)3240 π\pi
C)162 π\pi
D)1620 π\pi
E)1620
Question
Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is   After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.<div style=padding-top: 35px> After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.
Question
Evaluate the integral Evaluate the integral   in cylindrical coordinates.<div style=padding-top: 35px> in cylindrical coordinates.
Question
The region W is shown below.Write the limits of integration for wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  <strong>The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z ) d V  in spherical coordinates.  </strong> A)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta  B)  \int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x  C)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta  <div style=padding-top: 35px>

A) Wf(x,y,z)dV=0ππ/2π01f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta
B) Wf(x,y,z)dV=1101x21x2y20f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x
C) Wf(x,y,z)dV=0π011r20f(rcosθ,rsinθ,z)rdzdrdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta
Question
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px> and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  <div style=padding-top: 35px>
Question
The joint density function for random variables x and y is The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places.<div style=padding-top: 35px> Find the probability The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places.<div style=padding-top: 35px> .Give your answer to 3 decimal places.
Question
If f and g are two continuous functions on a region R, then RfgdA=RfdARgdA\int _ { R } f \cdot g d A = \int _ { R } f d A \cdot \int _ { R } g d A .
Question
Consider the integral Consider the integral   . (a)Sketch the region of integration and rewrite the integral with order of integration reversed. (b)Rewrite the integral in polar coordinates.<div style=padding-top: 35px> .
(a)Sketch the region of integration and rewrite the integral with order of integration reversed.
(b)Rewrite the integral in polar coordinates.
Question
The joint density function for x, y is given by p(x,y)={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.

A) 0100101150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d ^ { } y d x
B) 010010x1150ex/10ey/15dxdy\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
C) 010010x1150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d y d x
D) 010010x110ex/10ey/15dyd2x\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 10 } e ^ { - x / 10 } e ^ { - y / 15 } d y d ^ { 2 } x
E) 010x0101150ex/10ey/15dxdy\int _ { 0 } ^ { 10 - x } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
Question
Let W be the part of the solid sphere of radius 4, centered at the origin, that lies above the plane z = 2.Express WzdV\int _ { W } z d V in
(a)Cartesian
(b)Cylindrical
(c)Spherical coordinates.
Question
Consider the integral Consider the integral   .Convert the integral to polar coordinates.<div style=padding-top: 35px> .Convert the integral to polar coordinates.
Question
Evaluate the integral Evaluate the integral   , where R is the region shown below.  <div style=padding-top: 35px> , where R is the region shown below. Evaluate the integral   , where R is the region shown below.  <div style=padding-top: 35px>
Question
Consider the region in 3-space bounded by the surface Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> and the plane Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> where Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.<div style=padding-top: 35px> .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.
Question
Convert the integral to polar coordinates. 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

A) π/43π/41/sinθ2f(rcosθ,rsinθ)drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ)rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r
Question
Evaluate the integral Evaluate the integral   in spherical coordinates.<div style=padding-top: 35px> in spherical coordinates.
Question
Find the mass of the solid cylinder Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px> , Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px> with density function Find the mass of the solid cylinder   ,   with density function  <div style=padding-top: 35px>
Question
Find the area of the part of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 .

A) 6565553π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi  <strong>Find the area of the part of the hyperbolic paraboloid  z = y ^ { 2 } - x ^ { 2 }  that lies between the cylinders  x ^ { 2 } + y ^ { 2 } = 1  and  x ^ { 2 } + y ^ { 2 } = 16  .</strong> A)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi    B)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi  C)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi  D)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi  E)  \frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi  <div style=padding-top: 35px>
B) 6556π\frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi
C) 6565556π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi
D) 6553π\frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi
E) 3265453π\frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
Question
Evaluate the integral Evaluate the integral   in cylindrical coordinates.<div style=padding-top: 35px> in cylindrical coordinates.
Question
The function The function   has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.<div style=padding-top: 35px> has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.
Question
Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2)1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2)1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .

A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }
Question
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where  <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/76
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 16: Integrating Functions of Several Variables
1
Set up but do not evaluate a (multiple)integral that gives the volume of the solid bounded above by the sphere x2+y2+z2=2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 2 and below by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } .

A) 111x21x2x2+y22x2y2dxdydz\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d x d y d z
B) 111x21x2x2y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - x ^ { 2 } - y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
C) 1101x2x2+y22x2y2\int_{-1}^{1} \int_{0}^{\sqrt{1-x^{2}}} \int_{x^{2}+y^{2}}^{\sqrt{2-x^{2}-y^{2}}}dzdydx d z d y d x
D) 111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
E) 011x21x2x2+y22x2y2dzdydx\int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
111x21x2x2+y22x2y2dzdydx\int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { \sqrt { 2 - x ^ { 2 } - y ^ { 2 } } } d z d y d x
2
Estimate \int R f(x, y)dA using the table of values below, where R is the rectangle 0 \le x \le 4, 0 \le y \le 6
yx036023426434181412\begin{array}{c}y\\x\begin{array}{cccc}&0 & 3 & 6\\0 & 2 & 3 & 4 \\2 & 6 & 4 & 3 \\4 & 18 & 14 & 12\end{array}\end{array}
165
3
Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  and Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate  respectively.Evaluate Upper and lower sums for a function f on a rectangle R, using n subdivisions on each side, are   and   respectively.Evaluate
3
4
Consider the integral 159x45f(x,y)dydx\int _ { 1 } ^ { 5 } \int _ { 9 x } ^ { 45 } f ( x , y ) d y d x Rewrite the integral with the integration performed in the opposite order.

A) 9xA51y/9f(x,y)dxdy\int _ { 9 x } ^ { A 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
B) 9451y/9f(x,y)dydx\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d y d x
C) 9451y/9f(x,y)dxdy\int _ { 9 } ^ { 4 5 } \int _ { 1 } ^ { y / 9 } f ( x , y ) d x d y
D) 94510yf(x,y)dxdy\int _ { 9 } ^ { 45 } \int _ { 1 } ^ { 0 y } f ( x , y ) d x d y
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
5
Evaluate the iterated integral. Evaluate the iterated integral.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
6
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 0603cos4ysin(4x+5)dxdy\int _ { 0 } ^ { 6 } \int _ { 0 } ^ { 3 } \cos 4 y \sin ( 4 x + 5 ) d x d y
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
7
Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate   exactly and then give an answer rounded to 4 decimal places. exactly and then give an answer rounded to 4 decimal places.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate the iterated integral. Evaluate the iterated integral.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
9
Reverse the order of integration for the following integral. 13x294x12f(x,y)dydx\int _ { 1 } ^ { 3 } \int _ { x ^ { 2 } - 9 } ^ { 4 x - 12 } f ( x , y ) d y d x

A) 08(y+12)/4y+9f(x,y)dxdy\int _ { 0 } ^ { 8 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
B) 80(y+12)/4y+9f(x,y)dydx\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d y d x
C) 80(y+12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y + 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
D) 80y+9(y+12)/4f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { \sqrt { y + 9 } } ^ { ( y + 12 ) / 4 } f ( x , y ) d x d y
E) 80(y12)/4y+9f(x,y)dxdy\int _ { - 8 } ^ { 0 } \int _ { ( y - 12 ) / 4 } ^ { \sqrt { y + 9 } } f ( x , y ) d x d y
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate Evaluate   by first reversing the order of integration. by first reversing the order of integration.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
11
Let f(x, y)be a positive function of x and y which is independent of x, that is, f(x, y)= g(y)for some one-variable function g.Suppose that 03g(x)dx=10\int _ { 0 } ^ { 3 } g ( x ) d x = 10 and 010g(x)dx=1\int _ { 0 } ^ { 10 } g ( x ) d x = 1 .
Find RfdA\int _ { R } f d A , where R is the rectangle 0 \le x \le 3, 0 \le y \le 10.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
12
Let R1 be the region 0 \le x \le 3, -2 \le y \le 4, and let R2 be the region 3 \le x \le 5, -2 \le y \le 4.Suppose that the average value of f over R1 is 6 and the average value over R2 is 7.
Find the average value of f over R, 0x5,2y20 \leq x \leq 5 , - 2 \leq y \leq 2 .
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
13
True or false?
If f is any two-variable function, then RfdA=2SfdA\int _ { R } f d A = 2 \int _ { S } f d A , where R is the rectangle 0 \le x \le 2, 0 \le y \le 1 and S is the square 0 \le x, y \le 1.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
14
Find the volume of the region under the graph of Find the volume of the region under the graph of   and above the region  and above the region Find the volume of the region under the graph of   and above the region
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
15
Find a region R such that double integral R(2x2y2)dA\int _ { R } \left( 2 - x ^ { 2 } - y ^ { 2 } \right) d A has the largest value.

A) x2y22x ^ { 2 } - y ^ { 2 } \leq 2
B) x2y22x ^ { 2 } - y ^ { 2 } \geq 2
C) x2+y22x ^ { 2 } + y ^ { 2 } \leq 2
D) x2+y22x ^ { 2 } + y ^ { 2 } \geq 2
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
16
Find the volume under the graph of Find the volume under the graph of   lying over the triangle with vertices (0, 0), (2, 2)and (4, 0). lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
17
Reverse the order of integration for the following integral. 02y28yf(x,y)c2xdy\int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { \sqrt { 8 y } } f ( x , y ) c ^ { 2 } x d y

A) 02x2/8xf(x,y)dydx\int _ { 0 } ^ { 2 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
B) 04x2/8xf(x,y)dxdy\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d x d y
C) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { x } f ( x , y ) d y d x
D) 048x2xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { 8 x ^ { 2 } } ^ { \sqrt { x } } f ( x , y ) d y d x
E) 04x2/8xf(x,y)dydx\int _ { 0 } ^ { 4 } \int _ { x ^ { 2 } / 8 } ^ { \sqrt { x } } f ( x , y ) d y d x
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
18
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 010z0yx2y5z5dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { z } \int _ { 0 } ^ { y } x ^ { 2 } y ^ { 5 } z ^ { 5 } d x d y d z
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
19
The function The function   has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a. has an average value of 4 on the triangle with vertices at (0, 0), (0, 1)and (1, 0).Find the constant a.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
20
Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 340yy2exydxdy\int _ { 3 } ^ { 4 } \int _ { 0 } ^ { y } y ^ { 2 } e ^ { x y } d x d y

A) 12(7e9+e16)\frac { 1 } { 2 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
B) 12(25e9+e16)\frac { 1 } { 2 } \left( 25 - e ^ { 9 } + e ^ { 16 } \right)
C) 12(7+e9e16)\frac { 1 } { 2 } \left( - 7 + e ^ { 9 } - e ^ { 16 } \right)
D) 13(7e9+e16)\frac { 1 } { 3 } \left( - 7 - e ^ { 9 } + e ^ { 16 } \right)
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
21
Set up an iterated integral for Wf(x,y,z)dV\int _ { W } f ( x , y , z ) d V , where W is the solid region bounded below by the rectangle 0 \le x \le 3, 0 \le y \le 1 and above by the surface z2+y2=1z ^ { 2 } + y ^ { 2 } = 1

A) Wf(x,y,z)dV=030101y2f(x,y,z)dzcxαdy\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z c x \alpha d y
B) Wf(x,y,z)dV=030101y2f(x,y,z)dydzdx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d z d x
C) Wf(x,y,z)dV=030101y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
D) Wf(x,y,z)dV=03011y21y2f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d z d y d x
E) Wf(x,y,z)dV=03011y21y2f(x,y,z)dydxdz\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - y ^ { 2 } } } ^ { \sqrt { 1 - y ^ { 2 } } } f ( x , y , z ) d y d x d z
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
22
A cylindrical tube of radius 2cm and length 3cm contains a gas.As the tube spins around its axis, the density of the gas increases as you get farther from the axis.The density, D, at a distance of r cm from the axis is D(r)= 1 +9 r gm/cc.
Write a triple integral representing the total mass of the gas in the tube and evaluate the integral.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
23
Set up (but do not evaluate)an iterated integral to compute the mass of the solid paraboloid bounded by z=x2+y2z = x ^ { 2 } + y ^ { 2 } and z = 1, if the density is given by δ\delta (x, y, z)= z2.

A)  Mass =111x21x2x2+y21z2dzdxdy\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d x d y
B)  Mass =0101x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
C) Mass=111x21x201z2dzdydx\operatorname { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { 0 } ^ { 1 } z ^ { 2 } d z d y d x
D)  Mass =111x21x2x2+y21z2dzdydx\text { Mass } = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
E)  Mass =011x21x2x2+y21z2dzdydx\text { Mass } = \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { x ^ { 2 } + y ^ { 2 } } ^ { 1 } z ^ { 2 } d z d y d x
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
24
Compute the area of the flower-like region bounded by r = 6 + 3 cos (8 θ\theta ).
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
25
Find the triple integral of the function f(x, y, z)= xy sin (18yz)over the rectangular box 0 \le x \le π\pi , 0 \le y \le 1, 0 \le z \le π\pi /6.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
26
Set up the three-dimensional integral RydV\int _ { R } y d V where R is the "ice-cream cone" enclosed by a sphere of radius 2 centered at the origin and the cone z=3x2+3y2z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } .Use rectangular coordinates.  <strong>Set up the three-dimensional integral  \int _ { R } y d V  where R is the ice-cream cone enclosed by a sphere of radius 2 centered at the origin and the cone  z = \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } }  .Use rectangular coordinates.  </strong> A)  \int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta  B)  \int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta  C)  \int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x

A) Ryd V=02π013r4r2r2sinθdzdrdθ\int_{R} y d \mathrm{~V}=\int_{0}^{2 \pi} \int_{0}^{1} \int_{\sqrt{3 r}}^{\sqrt{4-r^{2}}} r^{2} \sin \theta d z d r d \theta
B) RydV=02π0π/602ρ3sinθsin2ϕdρdϕdθ\int _ { R } y d V = \int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { \pi / 6 } \int _ { 0 } ^ { 2 } \rho ^ { 3 } \sin \theta \sin ^ { 2 } \phi d \rho d \phi d \theta
C) RydV=111x21x23x2+3y24x2y2ydzdydx\int _ { R } y d V = \int _ { - 1 } ^ { 1 } \int _ { - \sqrt { 1 - x ^ { 2 } } } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { \sqrt { 3 x ^ { 2 } + 3 y ^ { 2 } } } ^ { \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } } y d z d y d x
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
27
Consider the volume between a cone centered along the positive z-axis, with vertex at the origin and containing the point (0, 1, 1), and a sphere of radius 3 centered at the origin.
Write a triple integral which represents this volume and evaluate it.Use spherical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
28
Calculate the following integral: Calculate the following integral:
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
29
Calculate the following integral: Calculate the following integral:   where R is the shaded region shown below. ·  where R is the shaded region shown below.
· Calculate the following integral:   where R is the shaded region shown below. ·
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
30
Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass. .If the density of this solid at a point (x, y, z)is given by Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder   .If the density of this solid at a point (x, y, z)is given by   , find its mass. , find its mass.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
31
A solid is bounded below by the triangle z = 0, x \ge 0, y \ge 0, x + y \le 1 and above by the plane z = x + 6y + 2.If the density of the solid is given by δ\delta (x, y, z)= z, find its mass.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate Evaluate   Provide an exact answer. Provide an exact answer.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
33
For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region. For the following region, decide whether to integrate using polar or Cartesian coordinates.Write an iterated integral of an arbitrary function f(x, y)over the region.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the integral Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles  , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles Evaluate the integral   , where R is the region in the first quadrant bounded by the y-axis, the line y = x and the circles
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
35
Let R be the ice-cream cone lying inside the sphere Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R. and inside the cone Let R be the ice-cream cone lying inside the sphere   and inside the cone   .Find the center of mass of R. .Find the center of mass of R.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
36
Evaluate exactly the integral Evaluate exactly the integral   , where R is the region shown below.  , where R is the region shown below. Evaluate exactly the integral   , where R is the region shown below.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
37
Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it). Sketch the region of integration of the following integral and then convert the expression to polar co-ordinates (you do not have to evaluate it).
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate the iterated integral Evaluate the iterated integral
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
39
Find the volume of the solid bounded by the paraboloid Find the volume of the solid bounded by the paraboloid   and the plane z = 1. and the plane z = 1.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
40
Convert the integral Convert the integral   to polar coordinates and hence evaluate it exactly. to polar coordinates and hence evaluate it exactly.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
41
Let x and y have joint density function Let x and y have joint density function   Find the probability that x > y +0.4. Find the probability that x > y +0.4.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
42
Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region. <strong>Choose the most appropriate coordinate system and set up a triple integral, including limits of integration, for a density function f(x, y, z)over the given region.  </strong> A)spherical coordinates B)cylindrical coordinates C)rectangular coordinates D)None of the above.

A)spherical coordinates
B)cylindrical coordinates
C)rectangular coordinates
D)None of the above.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
43
Evaluate the integral Evaluate the integral   in spherical coordinates. in spherical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate Evaluate   where W is the first octant portion of the ball of radius 3 centered at the origin. where W is the first octant portion of the ball of radius 3 centered at the origin.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
45
Let W be the region between the cylinders Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  and Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate  in the first octant and under the plane z = 1.Evaluate Let W be the region between the cylinders   and   in the first octant and under the plane z = 1.Evaluate
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
46
Rewrite the integral Rewrite the integral   in spherical coordinates.You do not have to evaluate the integral. in spherical coordinates.You do not have to evaluate the integral.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate the integral by interchanging the order of integration. Evaluate the integral by interchanging the order of integration.   . .
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
48
Let x and y have joint density function p(x,y)={x+y if 0x1,0y10 otherwise p ( x , y ) = \left\{ \begin{array} { l l } x + y & \text { if } 0 \leq x \leq 1,0 \leq y \leq 1 \\0 & \text { otherwise }\end{array} \right. Find the probability that 0.5 \le x \le 0.6.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
49
Consider the change of variables x = s + 3t, y = s - 2t.
Let R be the region bounded by the lines 2x + 3y = 1, 2x + 3y = 4, x - y = -3, and x - y = 2.Find the region T in the st-plane that corresponds to region R.
Use the change of variables to evaluate R2x+3ydA\int _ { R } 2 x + 3 y d A
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
50
The joint density function for x, y is given by The joint density function for x, y is given by   Find the probability that (x, y)satisfies  Find the probability that (x, y)satisfies The joint density function for x, y is given by   Find the probability that (x, y)satisfies
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
51
An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by An arrow strikes a circular target at random at a point (x, y), using a coordinate system with origin at the center of the target.The probability density function for the point where the arrow strikes is given by   What is the probability that the arrow strikes within 0.45 feet of the center of the target. What is the probability that the arrow strikes within 0.45 feet of the center of the target.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
52
Find the mass of the solid cylinder Find the mass of the solid cylinder   with density function  with density function Find the mass of the solid cylinder   with density function
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate the integral Evaluate the integral   .Give your answer to two decimal places. .Give your answer to two decimal places.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
54
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where p(x,y)={ax+by,0x8,0y80 otherwise p ( x , y ) = \left\{ \begin{array} { c l } a x + b y , & 0 \leq x \leq 8,0 \leq y \leq 8 \\0 & \text { otherwise }\end{array} \right.

A) a+b=1256a + b = \frac { 1 } { 256 }
B) a+b=132a + b = \frac { 1 } { 32 }
C) a+b<1256a + b < \frac { 1 } { 256 }
D)a=b
E) a+b=1512a + b = \frac { 1 } { 512 }
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
55
Consider the change of variables x = s + 5t, y = s - 3t.
Find the absolute value of the Jacobian Consider the change of variables x = s + 5t, y = s - 3t. Find the absolute value of the Jacobian   . .
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
56
Let R be the region bounded between the two ellipses x232+y222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 2 ^ { 2 } } = 4 Use this change of coordinates x=3rcost,y=2rsintx=3 r \cos t, y=2 r \sin t for r0,0t2πr \geq 0,0 \leq t \leq 2 \pi to evaluate the integral R(4x2+9y2)dA\int _ { R } \left( 4 x ^ { 2 } + 9 y ^ { 2 } \right) d A

A)240 π\pi
B)3240 π\pi
C)162 π\pi
D)1620 π\pi
E)1620
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
57
Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is Jane and Mary will meet outside the library at noon.Jane's arrival time is x and Mary's arrival time is y, where x and y are measured in minutes after noon.The probability density function for the variation in x and y is   After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet. After Jane arrives, she will wait up to 15 minutes for Mary, but Mary won't wait for Jane.Find the probability that they meet.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the integral Evaluate the integral   in cylindrical coordinates. in cylindrical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
59
The region W is shown below.Write the limits of integration for wf(x,y,z)dV\int _ { w } f ( x , y , z ) d V in spherical coordinates.  <strong>The region W is shown below.Write the limits of integration for  \int _ { w } f ( x , y , z ) d V  in spherical coordinates.  </strong> A)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta  B)  \int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x  C)  \int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta

A) Wf(x,y,z)dV=0ππ/2π01f(ρsinϕcosθ,ρsinϕsinθ,ρcosϕ)ρ2sinϕdρdϕdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { \pi / 2 } ^ { \pi } \int _ { 0 } ^ { 1 } f ( \rho \sin \phi \cos \theta , \rho \sin \phi \sin \theta , \rho \cos \phi ) \rho ^ { 2 } \sin \phi d \rho d \phi d \theta
B) Wf(x,y,z)dV=1101x21x2y20f(x,y,z)dzdydx\int _ { W } f ( x , y , z ) d V = \int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - x ^ { 2 } } } \int _ { - \sqrt { 1 - x ^ { 2 } - y ^ { 2 } } } ^ { 0 } f ( x , y , z ) d z d y d x
C) Wf(x,y,z)dV=0π011r20f(rcosθ,rsinθ,z)rdzdrdθ\int _ { W } f ( x , y , z ) d V = \int _ { 0 } ^ { \pi } \int _ { 0 } ^ { 1 } \int _ { - \sqrt { 1 - r ^ { 2 } } } ^ { 0 } f ( r \cos \theta , r \sin \theta , z ) r d z d r d \theta
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
60
Let R be the region in the first quadrant bounded between the circle Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.Then Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  Let Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  be the region in the first quadrant bounded between the ellipse Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral  and the two axes.
Use the change of variable x = s/5, y = t/3 to evaluate the integral Let R be the region in the first quadrant bounded between the circle   and the two axes.Then   Let   be the region in the first quadrant bounded between the ellipse   and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
61
The joint density function for random variables x and y is The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places. Find the probability The joint density function for random variables x and y is   Find the probability   .Give your answer to 3 decimal places. .Give your answer to 3 decimal places.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
62
If f and g are two continuous functions on a region R, then RfgdA=RfdARgdA\int _ { R } f \cdot g d A = \int _ { R } f d A \cdot \int _ { R } g d A .
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
63
Consider the integral Consider the integral   . (a)Sketch the region of integration and rewrite the integral with order of integration reversed. (b)Rewrite the integral in polar coordinates. .
(a)Sketch the region of integration and rewrite the integral with order of integration reversed.
(b)Rewrite the integral in polar coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
64
The joint density function for x, y is given by p(x,y)={1150ex/10ey/15x0,y00 otherwise p ( x , y ) = \left\{ \begin{array} { c c } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } & x \geq 0 , y \geq 0 \\0 & \text { otherwise }\end{array} \right. Write down an iterated integral to compute the probability that x + y \le 10.You do not need to do the integral.

A) 0100101150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d ^ { } y d x
B) 010010x1150ex/10ey/15dxdy\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
C) 010010x1150ex/10ey/15dydx\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d y d x
D) 010010x110ex/10ey/15dyd2x\int _ { 0 } ^ { 10 } \int _ { 0 } ^ { 10 - x } \frac { 1 } { 10 } e ^ { - x / 10 } e ^ { - y / 15 } d y d ^ { 2 } x
E) 010x0101150ex/10ey/15dxdy\int _ { 0 } ^ { 10 - x } \int _ { 0 } ^ { 10 } \frac { 1 } { 150 } e ^ { - x / 10 } e ^ { - y / 15 } d x d y
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
65
Let W be the part of the solid sphere of radius 4, centered at the origin, that lies above the plane z = 2.Express WzdV\int _ { W } z d V in
(a)Cartesian
(b)Cylindrical
(c)Spherical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
66
Consider the integral Consider the integral   .Convert the integral to polar coordinates. .Convert the integral to polar coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate the integral Evaluate the integral   , where R is the region shown below.  , where R is the region shown below. Evaluate the integral   , where R is the region shown below.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
68
Consider the region in 3-space bounded by the surface Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. and the plane Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. where Consider the region in 3-space bounded by the surface   and the plane   where   .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane. .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
69
Convert the integral to polar coordinates. 1112x2f(x,y)dydx\int _ { - 1 } ^ { 1 } \int _ { 1 } ^ { \sqrt { 2 - x ^ { 2 } } } f ( x , y ) d y d x

A) π/43π/41/sinθ2f(rcosθ,rsinθ)drdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) d r d \theta
B) 03π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { 0 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
C) π/43π/412f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
D) π/43π/41/sinθ2f(rcosθ,rsinθ)rdrdθ\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d r d \theta
E) π/43π/41/sinθ2f(rcosθ,rsinθ)rdθdr\int _ { \pi / 4 } ^ { 3 \pi / 4 } \int _ { 1 / \sin \theta } ^ { \sqrt { 2 } } f ( r \cos \theta , r \sin \theta ) r d \theta d r
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the integral Evaluate the integral   in spherical coordinates. in spherical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
71
Find the mass of the solid cylinder Find the mass of the solid cylinder   ,   with density function  , Find the mass of the solid cylinder   ,   with density function  with density function Find the mass of the solid cylinder   ,   with density function
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
72
Find the area of the part of the hyperbolic paraboloid z=y2x2z = y ^ { 2 } - x ^ { 2 } that lies between the cylinders x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and x2+y2=16x ^ { 2 } + y ^ { 2 } = 16 .

A) 6565553π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi  <strong>Find the area of the part of the hyperbolic paraboloid  z = y ^ { 2 } - x ^ { 2 }  that lies between the cylinders  x ^ { 2 } + y ^ { 2 } = 1  and  x ^ { 2 } + y ^ { 2 } = 16  .</strong> A)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 3 } \pi    B)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi  C)  \frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi  D)  \frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi  E)  \frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
B) 6556π\frac { \sqrt { 65 } - \sqrt { 5 } } { 6 } \pi
C) 6565556π\frac { 65 \sqrt { 65 } - 5 \sqrt { 5 } } { 6 } \pi
D) 6553π\frac { \sqrt { 65 } - \sqrt { 5 } } { 3 } \pi
E) 3265453π\frac { 32 \sqrt { 65 } - 4 \sqrt { 5 } } { 3 } \pi
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the integral Evaluate the integral   in cylindrical coordinates. in cylindrical coordinates.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
74
The function The function   has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k. has an average value of 16 on the rectangle with vertices at (0, 0),(0, 2), (2, 0)and (2, 2).Find the constant k.
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
75
Let W be the region between the spheres x2+y2+z2=1x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 1 and x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 .Given that W(x2+y2+z2)1/2dV=15π\int _ { W } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) ^ { 1 / 2 } d V = 15 \pi , evaluate the integral w(64x2+36y2+144z2)1/2dV\int _ { w } \left( 64 x ^ { 2 } + 36 y ^ { 2 } + 144 z ^ { 2 } \right) ^ { 1 / 2 } d V , where Wˉ\bar{W} is the region between the ellipsoids x232+y242+z222=1\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 1 and x232+y242+z222=4\frac { x ^ { 2 } } { 3 ^ { 2 } } + \frac { y ^ { 2 } } { 4 ^ { 2 } } + \frac { z ^ { 2 } } { 2 ^ { 2 } } = 4 .

A) 8640π8640 \pi
B) 2160π2160 \pi
C) 24π24 \pi
D) 360π360 \pi
E) 360π3360 \pi ^ { 3 }
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
76
Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where Find the condition on the non-negative constants a and b for p(x, y)to be a joint density function, where
Unlock Deck
Unlock for access to all 76 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 76 flashcards in this deck.