Exam 16: Integrating Functions of Several Variables

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Reverse the order of integration for the following integral. 02y28yf(x,y)c2xdy\int _ { 0 } ^ { 2 } \int _ { y ^ { 2 } } ^ { \sqrt { 8 y } } f ( x , y ) c ^ { 2 } x d y

Free
(Multiple Choice)
4.9/5
(31)
Correct Answer:
Verified

E

Evaluate the integral R(x2+y2)2dA\int _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } d A , where R is the region shown below.  Evaluate the integral  \int _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) ^ { 2 } d A  , where R is the region shown below.

Free
(Essay)
4.9/5
(41)
Correct Answer:
Verified

6656tan12\frac { 665 } { 6 } \tan ^ { - 1 } 2

Evaluate the iterated integral π2π36r4sinθdrdθ\int _ { \pi } ^ { 2 \pi } \int _ { 3 } ^ { 6 } r ^ { 4 } \sin \theta d r d \theta

Free
(Essay)
4.8/5
(28)
Correct Answer:
Verified

150665- \frac { 15066 } { 5 }

Find the volume under the graph of f(x,y)=xe5yf ( x , y ) = x e ^ { - 5 y } lying over the triangle with vertices (0, 0), (2, 2)and (4, 0).

(Essay)
4.8/5
(31)

Calculate the following integral: 020yx5y7dxy2y\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { y } x ^ { 5 } y ^ { 7 } d x y ^ { 2 } y

(Short Answer)
4.8/5
(28)

Find the volume of the region under the graph of f(x,y)=1+2x2+5yf ( x , y ) = 1 + 2 x ^ { 2 } + 5 y and above the region x2y,0y4x ^ { 2 } \leq y , 0 \leq y \leq 4

(Essay)
4.8/5
(31)

Evaluate the iterated integral. 120lnyye4xdxdy\int_{1}^{2} \int_{0}^{\ln y} y e^{4 x} d x d y

(Essay)
4.8/5
(43)

Evaluate WzdV\int _ { W } z d V where W is the first octant portion of the ball of radius 3 centered at the origin.

(Essay)
4.8/5
(39)

The joint density function for x, y is given by p(x,y)={52xy2 if 0x2y20 otherwise p ( x , y ) = \left\{ \begin{array} { l l } \frac { 5 } { 2 } x y ^ { 2 } & \text { if } 0 \leq x \leq 2 y \leq 2 \\0 & \text { otherwise }\end{array} \right. Find the probability that (x, y)satisfies x1.1yx \geq 1.1 y

(Short Answer)
4.7/5
(37)

Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 010z0yx2y5z5dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { z } \int _ { 0 } ^ { y } x ^ { 2 } y ^ { 5 } z ^ { 5 } d x d y d z

(Essay)
4.8/5
(35)

Evaluate the integral 4416y216y216x2y216x2y21x2+y2+z2dzcdxdy\int _ { - 4 } ^ { 4 } \int _ { - \sqrt { 16 - y ^ { 2 } } } ^ { \sqrt { 16 - y ^ { 2 } } } \int _ { - \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } ^ { \sqrt { 16 - x ^ { 2 } - y ^ { 2 } } } \frac { 1 } { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d z c d x d y in spherical coordinates.

(Essay)
4.9/5
(31)

Consider the integral 03x0f(x,y)dydx\int _ { 0 } ^ { 3 } \int _ { - x } ^ { 0 } f ( x , y ) d y d x . (a)Sketch the region of integration and rewrite the integral with order of integration reversed. (b)Rewrite the integral in polar coordinates.

(Essay)
4.8/5
(35)

Let R be the region in the first quadrant bounded between the circle x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 and the two axes.Then R(x2+y2)dA=π8\int _ { R } \left( x ^ { 2 } + y ^ { 2 } \right) d A = \frac { \pi } { 8 } Let Rˉ\bar { R } be the region in the first quadrant bounded between the ellipse 25x2+9y2=125 x ^ { 2 } + 9 y ^ { 2 } = 1 and the two axes. Use the change of variable x = s/5, y = t/3 to evaluate the integral x(75x2+27y2)dA\int _ { x } \left( 75 x ^ { 2 } + 27 y ^ { 2 } \right) d A

(Essay)
4.9/5
(41)

True or false? If f is any two-variable function, then RfdA=2SfdA\int _ { R } f d A = 2 \int _ { S } f d A , where R is the rectangle 0 \le x \le 2, 0 \le y \le 1 and S is the square 0 \le x, y \le 1.

(True/False)
5.0/5
(32)

Find the triple integral of the function f(x, y, z)= xy sin (18yz)over the rectangular box 0 \le x \le π\pi , 0 \le y \le 1, 0 \le z \le π\pi /6.

(Essay)
4.9/5
(42)

Consider the region in 3-space bounded by the surface f(x,y)=x2+y21f ( x , y ) = x ^ { 2 } + y ^ { 2 } - 1 and the plane z=kz = k where k>0k > 0 .Find the value of k such that the volume of this region below the xy-plane equals the volume of this region above the xy-plane.

(Essay)
4.8/5
(43)

Calculate the following integral exactly.(Your answer should not be a decimal approximating the true answer, but should be exactly equal to the true answer.Your answer may contain e, π\pi , 2\sqrt { 2 } , and so on.) 340yy2exydxdy\int _ { 3 } ^ { 4 } \int _ { 0 } ^ { y } y ^ { 2 } e ^ { x y } d x d y

(Multiple Choice)
4.8/5
(34)

Suppose a solid is the region in three-space in the first octant bounded by the plane x + y = 1 and the cylinder x2+z2=1x ^ { 2 } + z ^ { 2 } = 1 .If the density of this solid at a point (x, y, z)is given by δ(x,y,z)=z3\delta ( x , y , z ) = z ^ { 3 } , find its mass.

(Essay)
4.9/5
(40)

A cylindrical tube of radius 2cm and length 3cm contains a gas.As the tube spins around its axis, the density of the gas increases as you get farther from the axis.The density, D, at a distance of r cm from the axis is D(r)= 1 +9 r gm/cc. Write a triple integral representing the total mass of the gas in the tube and evaluate the integral.

(Essay)
4.9/5
(36)

Let R be the region in the first quadrant bounded by the x- and y-axes and the line x + y = 7.Evaluate Rx+2ydA\int _ { R } \sqrt { x + 2 y } d A exactly and then give an answer rounded to 4 decimal places.

(Essay)
5.0/5
(33)
Showing 1 - 20 of 76
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)