Deck 7: Conic Sections

Full screen (f)
exit full mode
Question
Graph Ellipses Not Centered at the Origin
(x+1)29+(y1)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,1 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 1 )  and  ( - 1 - 3 \sqrt { 3 } , 1 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 36 } = 1  foci at  ( 1 + 3 \sqrt { 3 } , - 1 )  and  ( 1 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 1 )  and  ( 3 \sqrt { 3 } , 1 )  D)  \frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )  <div style=padding-top: 35px>
Center at (1,1)( - 1,1 )

A) (x+1)236+(y1)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , 1 )
B) (x+1)29+(y1)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 36 } = 1
foci at (1+33,1)( 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( 1 - 3 \sqrt { 3 } , - 1 )
C) (x1)29+(y+1)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (33,1)( - 3 \sqrt { 3 } , 1 ) and (33,1)( 3 \sqrt { 3 } , 1 )
D) (x1)236+(y+1)29=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 14; length of minor axis = 6; center (0, 0) A) x29+y249=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y249=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 49 } = 1
D) x236+y2196=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 196 } = 1
Question
Graph the ellipse and locate the foci.
x249+y240=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )    <div style=padding-top: 35px>

A) foci at (3,0)( 3,0 ) and (3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )    <div style=padding-top: 35px>
B) foci at (0,7)( 0,7 ) and (0,7)( 0 , - 7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )    <div style=padding-top: 35px>
C) foci at (210,0)( 2 \sqrt { 10 } , 0 ) and (210,0)( - 2 \sqrt { 10 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )    <div style=padding-top: 35px>
D) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )    <div style=padding-top: 35px>
Question
Graph Ellipses Not Centered at the Origin
(x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    <div style=padding-top: 35px>

A) foci at (0,39)( 0 , \sqrt { 39 } ) and (0,39)( 0 , - \sqrt { 39 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    <div style=padding-top: 35px>
B) foci at (39,0)( \sqrt { 39 } , 0 ) and (39,0)( - \sqrt { 39 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    <div style=padding-top: 35px>
C) foci at (214,0)( 2 \sqrt { 14 } , 0 ) and (214,0)( - 2 \sqrt { 14 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    <div style=padding-top: 35px>
D) foci at (0,214)( 0,2 \sqrt { 14 } ) and (0,214)( 0 , - 2 \sqrt { 14 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20; length of minor axis = 16; center (0, 0) A) x2100+y264=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y2100=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y264=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 64 } = 1
D) x2400+y2256=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 256 } = 1
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( 0 , - \sqrt { 13 } )  and  ( 0 , \sqrt { 13 } )  B)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 36 } = 1   foci at  ( 0 , - \sqrt { 13 } )  and  ( 0 , \sqrt { 13 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( 0 , - 7 )  and  ( 0,7 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1   foci at  ( 0,7 )  and  ( 6,0 )  <div style=padding-top: 35px>

A) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (0,13)( 0 , - \sqrt { 13 } ) and (0,13)( 0 , \sqrt { 13 } )
B) x249+y236=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 36 } = 1

foci at (0,13)( 0 , - \sqrt { 13 } ) and (0,13)( 0 , \sqrt { 13 } )
C) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (0,7)( 0 , - 7 ) and (0,7)( 0,7 )
D) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1

foci at (0,7)( 0,7 ) and (6,0)( 6,0 )
Question
Graph the ellipse and locate the foci.
4x2=369y24 x ^ { 2 } = 36 - 9 y ^ { 2 }
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
B) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )    <div style=padding-top: 35px>

A) foci at (0,5)( 0,5 ) and (0,5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )    <div style=padding-top: 35px>
B) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )    <div style=padding-top: 35px>
C) foci at (0,26)( 0,2 \sqrt { 6 } ) and (0,26)( 0 , - 2 \sqrt { 6 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )    <div style=padding-top: 35px>
D) foci at (0,7)( 0,7 ) and (0,7)( 0 , - 7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 ) ; vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )

A) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
C) x216+y233=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 33 } = 1
D) x216+y249=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 49 } = 1
Question
Graph the ellipse and locate the foci.
x281+y225=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )    <div style=padding-top: 35px>

A)
foci at (214,0)( 2 \sqrt { 14 } , 0 ) and (214,0)( - 2 \sqrt { 14 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )    <div style=padding-top: 35px>
B) foci at (0,214)( 0,2 \sqrt { 14 } ) and (0,214)( 0 , - 2 \sqrt { 14 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )    <div style=padding-top: 35px>
C) foci at (53,0)( 5 \sqrt { 3 } , 0 ) and (53,0)( - 5 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )    <div style=padding-top: 35px>
D) foci at (0,53)( 0,5 \sqrt { 3 } ) and (0,53)( 0 , - 5 \sqrt { 3 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (2, -8)and (2, 0); endpoints of minor axis: (0, -4)and (4, -4); A) (x2)24+(y+4)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
B) (x2)24+(y4)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
C) (x+2)24+(y4)216=1\frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
D) (x+4)24+(y2)216=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
Question
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  B)  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  C)  \frac { x ^ { 2 } } { 49 } - \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  D)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 7,0 )  and  ( 7,0 )  <div style=padding-top: 35px>

A) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
B) x29+y249=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
C) x249y29=1\frac { x ^ { 2 } } { 49 } - \frac { y ^ { 2 } } { 9 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
D) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
foci at (7,0)( - 7,0 ) and (7,0)( 7,0 )
Question
Graph Ellipses Not Centered at the Origin
4(x1)2+16(y2)2=644 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph the ellipse and locate the foci.
9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>

A) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
B) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,2),(0,2);y( 0 , - 2 ) , ( 0,2 ) ; y -intercepts: 5- 5 and 5

A) x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y221=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 21 } = 1
C) x24+y221=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 21 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (-10, -4)and (6, -4); endpoints of minor axis: (-2, -8)and (-2, 0) A) (x+2)264+(y+4)216=1\frac { ( x + 2 ) ^ { 2 } } { 64 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
B) (x+4)216+(y+2)264=1\frac { ( x + 4 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 64 } = 1
C) (x2)264+(y4)216=0\frac { ( x - 2 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 0
D) (x2)264+(y4)216=1\frac { ( x - 2 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (2,0),(2,0);x( - 2,0 ) , ( 2,0 ) ; x -intercepts: 5- 5 and 5

A) x225+y221=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 21 } = 1
B) x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
C) x24+y221=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 21 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1
Question
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) ; vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
Question
Find the foci of the ellipse whose equation is given.
25(x+3)2+36(y+1)2=90025 ( x + 3 ) ^ { 2 } + 36 ( y + 1 ) ^ { 2 } = 900

A) foci at (3+11,1)( - 3 + \sqrt { 11 } , - 1 ) and (311,1)( - 3 - \sqrt { 11 } , - 1 )
B) foci at (1+11,3)( - 1 + \sqrt { 11 } , - 3 ) and (111,3)( - 1 - \sqrt { 11 } , - 3 )
C) foci at (11,1)( - \sqrt { 11 } , - 1 ) and (11,1)( \sqrt { 11 } , - 1 )
D) foci at (3+11,3)( - 3 + \sqrt { 11 } , - 3 ) and (311,3)( - 3 - \sqrt { 11 } , - 3 )
Question
Find the vertices and locate the foci for the hyperbola whose equation is given.
x2144y24=1\frac { \mathrm { x } ^ { 2 } } { 144 } - \frac { \mathrm { y } ^ { 2 } } { 4 } = 1

A) vertices: (12,0),(12,0)( - 12,0 ) , ( 12,0 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
B) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
C) vertices: (0,12),(0,12)( 0 , - 12 ) , ( 0,12 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
D) vertices: (12,0),(12,0)( - 12,0 ) , ( 12,0 )
foci: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
Question
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 38 feet and the height of the arch over the center of the roadway is 11 feet. Two trucks plan to
Use this road. They are both 8 feet wide. Truck 1 has an overall height of 10 feet and Truck 2 has an overall
Height of 9 feet. Draw a rough sketch of the situation and determine which of the trucks can pass under the
Bridge.

A)Both Truck 1 and Truck 2 can pass under the bridge.
B)Neither Truck 1 nor Truck 2 can pass under the bridge.
C)Truck 1 can pass under the bridge, but Truck 2 cannot.
D)Truck 2 can pass under the bridge, but Truck 1 cannot.
Question
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 30 feet and the height of the arch over the center of the roadway is 13 feet. Two trucks plan to
Use this road. They are both 10 feet wide. Truck 1 has an overall height of 12 feet and Truck 2 has an
Overall height of 13 feet. Draw a rough sketch of the situation and determine which of the trucks can pass
Under the bridge.

A)Truck 1 can pass under the bridge, but Truck 2 cannot.
B)Both Truck 1 and Truck 2 can pass under the bridge.
C)Neither Truck 1 nor Truck 2 can pass under the bridge.
D)Truck 2 can pass under the bridge, but Truck 1 cannot.
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  <div style=padding-top: 35px>

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
Question
Find the foci of the ellipse whose equation is given.
(x3)225+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 25 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1

A) foci at (3,211)( 3 , - 2 - \sqrt { 11 } ) and (3,2+11)( 3 , - 2 + \sqrt { 11 } )
B) foci at (2,311)( - 2,3 - \sqrt { 11 } ) and (2,3+11)( - 2,3 + \sqrt { 11 } )
C) foci at (3,211)( - 3 , - 2 - \sqrt { 11 } ) and (3,2+11)( - 3 , - 2 + \sqrt { 11 } )
D) foci at (4,211)( 4 , - 2 - \sqrt { 11 } ) and (4,2+11)( 4 , - 2 + \sqrt { 11 } )
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x2+y2=25x+y=7\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\x + y = 7\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\ x + y = 7 \end{array} \right.    </strong> A)  \{ ( 4,3 ) , ( 3,4 ) \}  B)  \{ ( - 4,3 ) , ( - 3,4 ) \}  C)  \{ ( 4 , - 3 ) , ( 3 , - 4 ) \}  D)  \{ ( - 4 , - 3 ) , ( - 3 , - 4 ) \}  <div style=padding-top: 35px>

A) {(4,3),(3,4)}\{ ( 4,3 ) , ( 3,4 ) \}
B) {(4,3),(3,4)}\{ ( - 4,3 ) , ( - 3,4 ) \}
C) {(4,3),(3,4)}\{ ( 4 , - 3 ) , ( 3 , - 4 ) \}
D) {(4,3),(3,4)}\{ ( - 4 , - 3 ) , ( - 3 , - 4 ) \}
Question
Find the vertices and locate the foci for the hyperbola whose equation is given.
y=±x26y = \pm \sqrt { x ^ { 2 } - 6 }

A) vertices: (6,0),(6,0)( - \sqrt { 6 } , 0 ) , ( \sqrt { 6 } , 0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
B) vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (6,0),(6,0)( - \sqrt { 6 } , 0 ) , ( \sqrt { 6 } , 0 )
C) vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
D) vertices: (0,6),(0,6)( 0 , - \sqrt { 6 } ) , ( 0 , \sqrt { 6 } )
foci: (0,23),(0,23)( 0 , - 2 \sqrt { 3 } ) , ( 0,2 \sqrt { 3 } )
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x2+y2=2525x2+16y2=400\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\25 x ^ { 2 } + 16 y ^ { 2 } = 400\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\ 25 x ^ { 2 } + 16 y ^ { 2 } = 400 \end{array} \right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,4 ) , ( 0 , - 4 ) \}  D)  \{ ( 4,0 ) , ( - 4,0 ) \}  <div style=padding-top: 35px>

A) {(0,5),(0,5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,4),(0,4)}\{ ( 0,4 ) , ( 0 , - 4 ) \}
D) {(4,0),(4,0)}\{ ( 4,0 ) , ( - 4,0 ) \}
Question
Convert the equation to the standard form for an ellipse by completing the square on x and y.
25x2+16y2100x+96y156=025 x ^ { 2 } + 16 y ^ { 2 } - 100 x + 96 y - 156 = 0

A) (x2)216+(y+3)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
B) (x+3)216+(y2)225=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
C) (x2)225+(y+3)216=1\frac { ( x - 2 ) ^ { 2 } } { 25 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x+2)216+(y3)225=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
Question
Graph the semi-ellipse.
y=169x2y = - \sqrt { 16 - 9 x ^ { 2 } }
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Find the vertices and locate the foci for the hyperbola whose equation is given.
y2100x2121=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 121 } = 1

A) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,221),(0,221)( 0 , - \sqrt { 221 } ) , ( 0 , \sqrt { 221 } )
B) vertices: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
foci: (221,0),(221,0)( - \sqrt { 221 } , 0 ) , ( \sqrt { 221 } , 0 )
C) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (221,0),(221,0)( - \sqrt { 221 } , 0 ) , ( \sqrt { 221 } , 0 )
D) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
Question
Graph Ellipses Not Centered at the Origin
16(x1)2+4(y2)2=6416 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 30 feet and the height of the arch over the center of the roadway is 13 feet. Two trucks plan to
Use this road. They are both 12 feet wide. Truck 1 has an overall height of 12 feet and Truck 2 has an
Overall height of 11 feet. Draw a rough sketch of the situation and determine which of the trucks can pass
Under the bridge.

A)Truck 2 can pass under the bridge, but Truck 1 cannot.
B)Both Truck 1 and Truck 2 can pass under the bridge.
C)Neither Truck 1 nor Truck 2 can pass under the bridge.
D)Truck 1 can pass under the bridge, but Truck 2 cannot.
Question
Find the foci of the ellipse whose equation is given.
(x3)236+(y1)216=1\frac { ( x - 3 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1

A) foci at (3+25,1)( 3 + 2 \sqrt { 5 } , 1 ) and (325,1)( 3 - 2 \sqrt { 5 } , 1 )
B) foci at (1+25,3)( 1 + 2 \sqrt { 5 } , 3 ) and (125,3)( 1 - 2 \sqrt { 5 } , 3 )
C) foci at (25,1)( - 2 \sqrt { 5 } , 1 ) and (25,1)( 2 \sqrt { 5 } , 1 )
D) foci at (3+25,3)( 3 + 2 \sqrt { 5 } , 3 ) and (325,3)( 3 - 2 \sqrt { 5 } , 3 )
Question
Find the foci of the ellipse whose equation is given.
36(x1)2+25(y3)2=90036 ( \mathrm { x } - 1 ) ^ { 2 } + 25 ( \mathrm { y } - 3 ) ^ { 2 } = 900

A) foci at (1,311)( 1,3 - \sqrt { 11 } ) and (1,3+11)( 1,3 + \sqrt { 11 } )
B) foci at (3,111)( 3,1 - \sqrt { 11 } ) and (3,1+11)( 3,1 + \sqrt { 11 } )
C) foci at (1,311)( - 1,3 - \sqrt { 11 } ) and (1,3+11)( - 1,3 + \sqrt { 11 } )
D) foci at (2,311)( 2,3 - \sqrt { 11 } ) and (2,3+11)( 2,3 + \sqrt { 11 } )
Question
Convert the equation to the standard form for an ellipse by completing the square on x and y.
25x2+36y250x216y551=025 x ^ { 2 } + 36 y ^ { 2 } - 50 x - 216 y - 551 = 0

A) (x1)236+(y3)225=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
B) (x3)236+(y1)225=1\frac { ( x - 3 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
C) (x1)225+(y3)236=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1
D) (x+1)236+(y+3)225=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
Question
Find the vertices and locate the foci for the hyperbola whose equation is given.
16x24y2=6416 x ^ { 2 } - 4 y ^ { 2 } = 64

A) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
C) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
D) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
Question
Write Equations of Hyperbolas in Standard Form
Foci: (-5, 0), (5, 0); vertices: (-2, 0), (2, 0) A) x24y221=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 21 } = 1
B) y24x221=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 21 } = 1
C) x24y225=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 25 } = 1
D) y24x225=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1
Question
Find the vertices and locate the foci for the hyperbola whose equation is given.
25y29x2=22525 \mathrm { y } ^ { 2 } - 9 \mathrm { x } ^ { 2 } = 225

A) vertices: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 )
foci: (0,34),(0,34)( 0 , - \sqrt { 34 } ) , ( 0 , \sqrt { 34 } )
B) vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 )
foci: (34,0),(34,0)( - \sqrt { 34 } , 0 ) , ( \sqrt { 34 } , 0 )
C) vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
foci: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
D) vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )
foci: (0,34),(0,34)( 0 , - \sqrt { 34 } ) , ( 0 , \sqrt { 34 } )
Question
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±35xy = \pm \frac { 3 } { 5 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1  B)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1  <div style=padding-top: 35px>

A) x225y29=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1
B) y225x29=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 9 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D) y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
Question
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(x+4)24(y4)2=4( x + 4 ) ^ { 2 } - 4 ( y - 4 ) ^ { 2 } = 4

A) Center: (4,4)( - 4,4 ) ; Vertices: (6,4)( - 6,4 ) and (2,4)( - 2,4 ) ; Foci: (45,4)( - 4 - \sqrt { 5 } , 4 ) and (4+5,4)( - 4 + \sqrt { 5 } , 4 )
B) Center: (4,4)( 4 , - 4 ) ; Vertices: (2,4)( 2 , - 4 ) and (6,4)( 6 , - 4 ) ; Foci: (45,4)( 4 - \sqrt { 5 } , 4 ) and (4+5,4)( 4 + \sqrt { 5 } , 4 )
C) Center: (4,4)( - 4,4 ) ; Vertices: (5,5)( - 5,5 ) and (1,5)( - 1,5 ) ; Foci: (35,5)( - 3 - \sqrt { 5 } , 5 ) and (3+5,5)( - 3 + \sqrt { 5 } , 5 )
D) Center: (4,4)( - 4,4 ) ; Vertices: (2,4)( 2,4 ) and (2,4)( - 2,4 ) ; Foci: (5,4)( - \sqrt { 5 } , 4 ) and (5,4)( \sqrt { 5 } , 4 )
Question
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
36y24x2=14436 y ^ { 2 } - 4 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    <div style=padding-top: 35px>

A) Asymptotes: y=±13xy = \pm \frac { 1 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    <div style=padding-top: 35px>
B) Asymptotes: y=±3x\mathrm { y } = \pm 3 \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    <div style=padding-top: 35px>
C) Asymptotes: y=±13x\mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    <div style=padding-top: 35px>
D) Asymptotes: y=±3x\mathrm { y } = \pm 3 \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    <div style=padding-top: 35px>
Question
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
4x29y2=364 x^{2}-9 y^{2}=36
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x    <div style=padding-top: 35px>
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1  B)  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1  D)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1  <div style=padding-top: 35px>

A) y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
B) x24y29=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1
C) x29y24=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1
D) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1
Question
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310x\mathrm { y } = \frac { 3 } { 10 } \mathrm { x }

A) y236x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
4y225x216y100x184=04 y ^ { 2 } - 25 x ^ { 2 } - 16 y - 100 x - 184 = 0

A) (y2)225(x+2)24=1\frac { ( y - 2 ) ^ { 2 } } { 25 } - \frac { ( x + 2 ) ^ { 2 } } { 4 } = 1
В) (y+2)225(x2)24=1\frac { ( y + 2 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
C) (y2)24(x+2)225=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 25 } = 1
D) (x2)24(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
Question
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (4,0),(4,0)( - 4,0 ) , ( 4,0 ) ; foci: (9,0),(9,0)( - 9,0 ) , ( - 9,0 )

A) x216y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
B) x265y216=1\frac { x ^ { 2 } } { 65 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) x281y216=1\frac { x ^ { 2 } } { 81 } - \frac { y ^ { 2 } } { 16 } = 1
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
4x216y216x32y64=04 x ^ { 2 } - 16 y ^ { 2 } - 16 x - 32 y - 64 = 0

A) (x2)216(y+1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
B) (x+2)216(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } - \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x2)216(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
D) (x2)24(y+1)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 1 ) ^ { 2 } } { 16 } = 1
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2y24x+4y1=0x ^ { 2 } - y ^ { 2 } - 4 x + 4 y - 1 = 0

A) (x2)2(y2)2=1( x - 2 ) ^ { 2 } - ( y - 2 ) ^ { 2 } = 1
B) (y2)2(x2)2=1( y - 2 ) ^ { 2 } - ( x - 2 ) ^ { 2 } = 1
C) (x2)2+(y2)2=1( x - 2 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 1
D) (y2)216(x2)216=1\frac { ( y - 2 ) ^ { 2 } } { 16 } - \frac { ( x - 2 ) ^ { 2 } } { 16 } = 1
Question
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(y1)29(x2)2100=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 100 } = 1

A) Center: (2,1)( 2,1 ) ; Vertices: (2,2)( 2 , - 2 ) and (2,4)( 2,4 ) ; Foci: (2,1109)( 2,1 - \sqrt { 109 } ) and (2,1+109)( 2,1 + \sqrt { 109 } )
B) Center: (2,1)( - 2 , - 1 ) ; Vertices: (2,4)( - 2 , - 4 ) and (2,2)( - 2,2 ) ; Foci: (2,1109)( - 2 , - 1 - \sqrt { 109 } ) and (2,1+109)( - 2 , - 1 + \sqrt { 109 } )
C) Center: (2,1)( 2,1 ) ; Vertices: (2,1109)( 2,1 - \sqrt { 109 } ) and (2,1+109)( 2,1 + \sqrt { 109 } ) ; Foci: (2,2)( 2 , - 2 ) and (2,4)( 2,4 )
D) Center: (2,1)( 2,1 ) ; Vertices: (2,1)( 2 , - 1 ) and (3,5)( 3,5 ) ; Foci: (2,2109)( 2,2 - \sqrt { 109 } ) and (3,2+109)( 3,2 + \sqrt { 109 } )
Question
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(x1)249(y+4)236=1\frac { ( x - 1 ) ^ { 2 } } { 49 } - \frac { ( y + 4 ) ^ { 2 } } { 36 } = 1

A) Center: (1,4)( 1 , - 4 ) ; Vertices: (6,4)( - 6 , - 4 ) and (8,4)( 8 , - 4 ) ; Foci: (185,4)( 1 - \sqrt { 85 } , - 4 ) and (1+85,4)( 1 + \sqrt { 85 } , - 4 )
B) Center: (1,4)( - 1,4 ) ; Vertices: (8,4)( - 8,4 ) and (6,4)( 6,4 ) ; Foci: (185,4)( - 1 - \sqrt { 85 } , 4 ) and (1+85,4)( - 1 + \sqrt { 85 } , 4 )
C) Center: (1,4)( 1 , - 4 ) ; Vertices: (6,4)( - 6,4 ) and (8,4)( 8,4 ) ; Foci: (185,4)( 1 - \sqrt { 85 } , 4 ) and (1+85,4)( 1 + \sqrt { 85 } , 4 )
D) Center: (1,4)( 1 , - 4 ) ; Vertices: (5,4)( - 5 , - 4 ) and (9,4)( 9 , - 4 ) ; Foci: (2+85,3)( 2 + \sqrt { 85 } , - 3 ) and (3+85,3)( - 3 + \sqrt { 85 } , - 3 )
Question
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x    <div style=padding-top: 35px>

A) Asymptotes: y=±2xy = \pm 2 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x    <div style=padding-top: 35px>
B) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x    <div style=padding-top: 35px>
C) Asymptotes: y=±2xy = \pm 2 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x    <div style=padding-top: 35px>
D) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x    <div style=padding-top: 35px>
Question
Write Equations of Hyperbolas in Standard Form
Center: (6,3);( 6,3 ) ; Focus: (4,3);( 4,3 ) ; Vertex: (5,3)( 5,3 )

A) (x6)2(y3)23=1( x - 6 ) ^ { 2 } - \frac { ( y - 3 ) ^ { 2 } } { 3 } = 1
B) (x6)23(y3)2=1\frac { ( x - 6 ) ^ { 2 } } { 3 } - ( y - 3 ) ^ { 2 } = 1
C) (x3)2(y6)23=1( x - 3 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 3 } = 1
D) (x3)23(y6)2=1\frac { ( x - 3 ) ^ { 2 } } { 3 } - ( y - 6 ) ^ { 2 } = 1
Question
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 25 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1  D)  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1  <div style=padding-top: 35px>

A) (y1)24(x2)225=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 25 } = 1
B) (y1)225(x2)24=1\frac { ( y - 1 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
C) (x2)225(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
D) (x2)24(y1)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
Question
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
y=±x26y = \pm \sqrt { x ^ { 2 } - 6 }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
B) Asymptotes: y=±3xy = \pm 3 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
C) Asymptotes: y=±13xy = \pm \frac { 1 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x    <div style=padding-top: 35px>
Question
Write Equations of Hyperbolas in Standard Form
Foci: (0, -5), (0, 5); vertices: (0, -3), (0, 3) A) y29x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D) y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
Question
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(y1)24(x3)2=4( y - 1 ) ^ { 2 } - 4 ( x - 3 ) ^ { 2 } = 4

A) Center: (3,1)( 3,1 ) ; Vertices: (3,1)( 3 , - 1 ) and (3,3)( 3,3 ) ; Foci: (3,15)( 3,1 - \sqrt { 5 } ) and (3,1+5)( 3,1 + \sqrt { 5 } )
B) Center: (3,1)( - 3 , - 1 ) ; Vertices: (3,3)( - 3 , - 3 ) and (3,1)( - 3,1 ) ; Foci: (3,15)( - 3 , - 1 - \sqrt { 5 } ) and (3,1+5)( - 3 , - 1 + \sqrt { 5 } )
C) Center: (3,1)( 3,1 ) ; Vertices: (3,2)( - 3 , - 2 ) and (3,2);( 3,2 ) ; Foci: (3,5)( 3 , - \sqrt { 5 } ) and (3,5)( 3 , \sqrt { 5 } )
D) Center: (3,1)( 3,1 ) ; Vertices: (4,0)( 4,0 ) and (4,4)( 4,4 ) ; Foci: (4,25)( 4,2 - \sqrt { 5 } ) and (4,2+5)( 4,2 + \sqrt { 5 } )
Question
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y216x24y+64x76=0\mathrm { y } ^ { 2 } - 16 \mathrm { x } ^ { 2 } - 4 \mathrm { y } + 64 \mathrm { x } - 76 = 0

A) (y2)216(x2)2=1\frac { ( y - 2 ) ^ { 2 } } { 16 } - ( x - 2 ) ^ { 2 } = 1
B) (x2)216(y2)2=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - ( y - 2 ) ^ { 2 } = 1
C) (y4)216(x4)2=1\frac { ( y - 4 ) ^ { 2 } } { 16 } - ( x - 4 ) ^ { 2 } = 1
D) (x2)2(y2)216=1( x - 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=8yx ^ { 2 } = - 8 y

A)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve Applied Problems Involving Hyperbolas
Solve the problem.
Two recording devices are set 2600 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 977.78977.78 feet
B) 2900.862900.86 feet
C) 1236.931236.93 feet
D) 1648.041648.04 feet
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)24(y+2)2=4( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
y2=12xy ^ { 2 } = - 12 x

A) focus: (3,0)( - 3,0 )
directrix: x=3x = 3
B) focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = - 3
D) focus: (3,0)( - 3,0 )
directrix: y=3y = 3
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=40yx ^ { 2 } = 40 y

A) focus: (0,10)( 0,10 )
directrix: y=10y = - 10
B) focus: (10,0)( 10,0 )
directrix: y=10y = 10
C) focus: (10,0)( 10,0 )
directrix: x=10x = 10
D) focus: (0,10)( 0 , - 10 )
directrix: x=10\mathrm { x } = - 10
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
x2y2=9x2+y2=9\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 9 \\x ^ { 2 } + y ^ { 2 } = 9\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 9 \\ x ^ { 2 } + y ^ { 2 } = 9 \end{array}    </strong> A)  \{ ( 3,0 ) , ( - 3,0 ) \}  B)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) \}  <div style=padding-top: 35px>

A) {(3,0),(3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
B) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3)}\{ ( 0,3 ) \}
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=16yx ^ { 2 } = - 16 y

A) focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
B) focus: (8,0)( - 8,0 )
directrix: x=4x = 4
C) focus: (0,4)( 0 , - 4 )
directrix: y=4y = - 4
D) focus: (0,4)( 0,4 )
directrix: y=4y = - 4
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+1)24(y1)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)  <div style=padding-top: 35px>
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)  <div style=padding-top: 35px>
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)  <div style=padding-top: 35px>
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)  <div style=padding-top: 35px>
D)
11ecbe12_bedf_f697_88d3_9faa96c6c770_TB1195_11
Question
Solve Applied Problems Involving Hyperbolas
Solve the problem.
Two LORAN stations are positioned 278 miles apart along a straight shore. A ship records a time difference of 0.00086 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per
Second.)Where will the ship reach shore if it were to follow the hyperbola corresponding to this time
Difference? If the ship is 200 miles offshore, what is the position of the ship?

A)59 miles from the master station, (161.9, 200)
B)80 miles from the master station, (200, 161.9)
C)59 miles from the master station, (200, 161.9)
D)80 miles from the master station, (161.9, 200)
Question
Additional Concepts
Use the relation's graph to determine its domain and range.
x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) Domain:  [ - 4,4 ]  Range:  [ - 2,2 ]  B) Domain:  [ - 2,2 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 2,2 )  D) Domain:  [ - 4,4 ]   \text { Range: }(-\infty, \infty)  <div style=padding-top: 35px>

A) Domain: [4,4][ - 4,4 ]
Range: [2,2][ - 2,2 ]
B) Domain: [2,2][ - 2,2 ]
Range: [4,4][ - 4,4 ]
C) Domain: (4,4)( - 4,4 )
Range: (2,2)( - 2,2 )
D) Domain: [4,4][ - 4,4 ]
 Range: (,)\text { Range: }(-\infty, \infty)
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x=6y2x = 6 y ^ { 2 }

A) focus: (124,0)\left( \frac { 1 } { 24 } , 0 \right)
directrix: x=124x = - \frac { 1 } { 24 }
B) focus: (0,124)\left( 0 , \frac { 1 } { 24 } \right)
directrix: y=124\mathrm { y } = - \frac { 1 } { 24 }
C) focus: (16,0)\left( \frac { 1 } { 6 } , 0 \right)
directrix: x=16x = - \frac { 1 } { 6 }
D) focus: (124,0)\left( \frac { 1 } { 24 } , 0 \right)
directrix: x=124x = \frac { 1 } { 24 }
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)2(x1)2=3( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y+4)24(x+3)2=4(y+4)^{2}-4(x+3)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Additional Concepts
Use the relation's graph to determine its domain and range.
x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Domain:  ( - \infty , - 2 ]  or  [ 2 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 )  or  ( 2 , \infty )  C) Domain:  ( - \infty , - 2 ]  and  [ 2 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,2)( - \infty , - 2 ) or (2,)( 2 , \infty )
C) Domain: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,)( - \infty , \infty )
Range: (,)( - \infty , \infty )
Question
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
16x2+y2=16y216x2=16\begin{aligned}16 x ^ { 2 } + y ^ { 2 } & = 16 \\y ^ { 2 } - 16 x ^ { 2 } & = 16\end{aligned}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{aligned} 16 x ^ { 2 } + y ^ { 2 } & = 16 \\ y ^ { 2 } - 16 x ^ { 2 } & = 16 \end{aligned}    </strong> A)  \{ ( 0 , - 4 ) , ( 0,4 ) \}  B)  \{ ( 0 , - 4 ) \}  C)  \{ ( 0,16 ) \}  D)  \{ ( 4,0 ) , ( 4,0 ) \}  <div style=padding-top: 35px>

A) {(0,4),(0,4)}\{ ( 0 , - 4 ) , ( 0,4 ) \}
B) {(0,4)}\{ ( 0 , - 4 ) \}
C) {(0,16)}\{ ( 0,16 ) \}
D) {(4,0),(4,0)}\{ ( 4,0 ) , ( 4,0 ) \}
Question
Use the center, vertices, and asymptotes to graph the hyperbola.
(y+2)29(x2)24=1\frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Question
Solve Applied Problems Involving Hyperbolas
Solve the problem.
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,3)( 0,3 ) and then moves closer and closer to the line y=52x\mathrm { y } = \frac { 5 } { 2 } \mathrm { x } as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas Solve the problem. A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,3 )  and then moves closer and closer to the line  \mathrm { y } = \frac { 5 } { 2 } \mathrm { x }  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .   </strong> A)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1  B)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1  <div style=padding-top: 35px>

A) y29x23625=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1
B) x29y2(756)2=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } = 1
C) y23625x29=1\frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1
D) x2(756)2y29=1\frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1
Question
Additional Concepts
Use the relation's graph to determine its domain and range.
y24x225=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 ]  or  [ 2 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 ]  and  [ 2 , \infty )  C) Domain:  ( - \infty , - 2 ]  or  [ 2 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 2 ]  and  [ 2 , \infty )  Range:  ( - \infty , \infty )  <div style=padding-top: 35px>

A) Domain: (,)( - \infty , \infty )
Range: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
C) Domain: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
y2=24xy ^ { 2 } = 24 x

A) focus: (6,0)( 6,0 )
directrix: x=6x = - 6
B) focus: (0,6)( 0,6 )
directrix: y=6y = - 6
C) focus: (6,0)( 6,0 )
directrix: x=6x = 6
D) focus: (0,6)( 0 , - 6 )
directrix: y=6y = - 6
Question
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=11yx ^ { 2 } = 11 y

A)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
B)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
C)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
D)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)   <div style=padding-top: 35px>
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/120
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Conic Sections
1
Graph Ellipses Not Centered at the Origin
(x+1)29+(y1)216=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    </strong> A)   B)   C)   D)
A
2
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form   Center at  ( - 1,1 ) </strong> A)  \frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , 1 )  and  ( - 1 - 3 \sqrt { 3 } , 1 )  B)  \frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 36 } = 1  foci at  ( 1 + 3 \sqrt { 3 } , - 1 )  and  ( 1 - 3 \sqrt { 3 } , - 1 )  C)  \frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1  foci at  ( - 3 \sqrt { 3 } , 1 )  and  ( 3 \sqrt { 3 } , 1 )  D)  \frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1  foci at  ( - 1 + 3 \sqrt { 3 } , - 1 )  and  ( - 1 - 3 \sqrt { 3 } , - 1 )
Center at (1,1)( - 1,1 )

A) (x+1)236+(y1)29=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , 1 )
B) (x+1)29+(y1)236=1\frac { ( x + 1 ) ^ { 2 } } { 9 } + \frac { ( y - 1 ) ^ { 2 } } { 36 } = 1
foci at (1+33,1)( 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( 1 - 3 \sqrt { 3 } , - 1 )
C) (x1)29+(y+1)236=1\frac { ( x - 1 ) ^ { 2 } } { 9 } + \frac { ( y + 1 ) ^ { 2 } } { 36 } = 1
foci at (33,1)( - 3 \sqrt { 3 } , 1 ) and (33,1)( 3 \sqrt { 3 } , 1 )
D) (x1)236+(y+1)29=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y + 1 ) ^ { 2 } } { 9 } = 1
foci at (1+33,1)( - 1 + 3 \sqrt { 3 } , - 1 ) and (133,1)( - 1 - 3 \sqrt { 3 } , - 1 )
A
3
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis vertical with length 14; length of minor axis = 6; center (0, 0) A) x29+y249=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
C) x26+y249=1\frac { x ^ { 2 } } { 6 } + \frac { y ^ { 2 } } { 49 } = 1
D) x236+y2196=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 196 } = 1
A
4
Graph the ellipse and locate the foci.
x249+y240=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )

A) foci at (3,0)( 3,0 ) and (3,0)( - 3,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )
B) foci at (0,7)( 0,7 ) and (0,7)( 0 , - 7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )
C) foci at (210,0)( 2 \sqrt { 10 } , 0 ) and (210,0)( - 2 \sqrt { 10 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )
D) foci at (0,3)( 0,3 ) and (0,3)( 0 , - 3 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 40 } = 1    </strong> A) foci at  ( 3,0 )  and  ( - 3,0 )    B) foci at  ( 0,7 )  and  ( 0 , - 7 )    C) foci at  ( 2 \sqrt { 10 } , 0 )  and  ( - 2 \sqrt { 10 } , 0 )    D) foci at  ( 0,3 )  and  ( 0 , - 3 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
5
Graph Ellipses Not Centered at the Origin
(x+2)216+(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  \frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
6
Graph the ellipse and locate the foci.
x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )

A) foci at (0,39)( 0 , \sqrt { 39 } ) and (0,39)( 0 , - \sqrt { 39 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )
B) foci at (39,0)( \sqrt { 39 } , 0 ) and (39,0)( - \sqrt { 39 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )
C) foci at (214,0)( 2 \sqrt { 14 } , 0 ) and (214,0)( - 2 \sqrt { 14 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )
D) foci at (0,214)( 0,2 \sqrt { 14 } ) and (0,214)( 0 , - 2 \sqrt { 14 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1    </strong> A) foci at  ( 0 , \sqrt { 39 } )  and  ( 0 , - \sqrt { 39 } )    B) foci at  ( \sqrt { 39 } , 0 )  and  ( - \sqrt { 39 } , 0 )    C) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    D) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
7
Find the standard form of the equation of the ellipse satisfying the given conditions.
Major axis horizontal with length 20; length of minor axis = 16; center (0, 0) A) x2100+y264=1\frac { x ^ { 2 } } { 100 } + \frac { y ^ { 2 } } { 64 } = 1
B) x264+y2100=1\frac { x ^ { 2 } } { 64 } + \frac { y ^ { 2 } } { 100 } = 1
C) x220+y264=1\frac { x ^ { 2 } } { 20 } + \frac { y ^ { 2 } } { 64 } = 1
D) x2400+y2256=1\frac { x ^ { 2 } } { 400 } + \frac { y ^ { 2 } } { 256 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
8
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( 0 , - \sqrt { 13 } )  and  ( 0 , \sqrt { 13 } )  B)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 36 } = 1   foci at  ( 0 , - \sqrt { 13 } )  and  ( 0 , \sqrt { 13 } )  C)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( 0 , - 7 )  and  ( 0,7 )  D)  \frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1   foci at  ( 0,7 )  and  ( 6,0 )

A) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (0,13)( 0 , - \sqrt { 13 } ) and (0,13)( 0 , \sqrt { 13 } )
B) x249+y236=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 36 } = 1

foci at (0,13)( 0 , - \sqrt { 13 } ) and (0,13)( 0 , \sqrt { 13 } )
C) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (0,7)( 0 , - 7 ) and (0,7)( 0,7 )
D) x236+y249=1\frac { x ^ { 2 } } { 36 } + \frac { y ^ { 2 } } { 49 } = 1

foci at (0,7)( 0,7 ) and (6,0)( 6,0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
9
Graph the ellipse and locate the foci.
4x2=369y24 x ^ { 2 } = 36 - 9 y ^ { 2 }
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )

A) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
B) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  4 x ^ { 2 } = 36 - 9 y ^ { 2 }    </strong> A) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    B) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
10
Graph the ellipse and locate the foci.
x224+y249=1\frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )

A) foci at (0,5)( 0,5 ) and (0,5)( 0 , - 5 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )
B) foci at (5,0)( 5,0 ) and (5,0)( - 5,0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )
C) foci at (0,26)( 0,2 \sqrt { 6 } ) and (0,26)( 0 , - 2 \sqrt { 6 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )
D) foci at (0,7)( 0,7 ) and (0,7)( 0 , - 7 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 24 } + \frac { y ^ { 2 } } { 49 } = 1   </strong> A) foci at  ( 0,5 )  and  ( 0 , - 5 )    B) foci at  ( 5,0 )  and  ( - 5,0 )    C) foci at  ( 0,2 \sqrt { 6 } )  and  ( 0 , - 2 \sqrt { 6 } )    D) foci at  ( 0,7 )  and  ( 0 , - 7 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
11
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 ) ; vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )

A) x233+y249=1\frac { x ^ { 2 } } { 33 } + \frac { y ^ { 2 } } { 49 } = 1
B) x249+y233=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 33 } = 1
C) x216+y233=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 33 } = 1
D) x216+y249=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 49 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
12
Graph the ellipse and locate the foci.
x281+y225=1\frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )

A)
foci at (214,0)( 2 \sqrt { 14 } , 0 ) and (214,0)( - 2 \sqrt { 14 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )
B) foci at (0,214)( 0,2 \sqrt { 14 } ) and (0,214)( 0 , - 2 \sqrt { 14 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )
C) foci at (53,0)( 5 \sqrt { 3 } , 0 ) and (53,0)( - 5 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )
D) foci at (0,53)( 0,5 \sqrt { 3 } ) and (0,53)( 0 , - 5 \sqrt { 3 } )
 <strong>Graph the ellipse and locate the foci.  \frac { x ^ { 2 } } { 81 } + \frac { y ^ { 2 } } { 25 } = 1   </strong> A) foci at  ( 2 \sqrt { 14 } , 0 )  and  ( - 2 \sqrt { 14 } , 0 )    B) foci at  ( 0,2 \sqrt { 14 } )  and  ( 0 , - 2 \sqrt { 14 } )    C) foci at  ( 5 \sqrt { 3 } , 0 )  and  ( - 5 \sqrt { 3 } , 0 )    D) foci at  ( 0,5 \sqrt { 3 } )  and  ( 0 , - 5 \sqrt { 3 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
13
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (2, -8)and (2, 0); endpoints of minor axis: (0, -4)and (4, -4); A) (x2)24+(y+4)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
B) (x2)24+(y4)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
C) (x+2)24+(y4)216=1\frac { ( x + 2 ) ^ { 2 } } { 4 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
D) (x+4)24+(y2)216=1\frac { ( x + 4 ) ^ { 2 } } { 4 } + \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
14
Write Equations of Ellipses in Standard Form
 <strong>Write Equations of Ellipses in Standard Form  </strong> A)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  B)  \frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  C)  \frac { x ^ { 2 } } { 49 } - \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 2 \sqrt { 10 } , 0 )  and  ( 2 \sqrt { 10 } , 0 )  D)  \frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1  foci at  ( - 7,0 )  and  ( 7,0 )

A) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
B) x29+y249=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 49 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
C) x249y29=1\frac { x ^ { 2 } } { 49 } - \frac { y ^ { 2 } } { 9 } = 1
foci at (210,0)( - 2 \sqrt { 10 } , 0 ) and (210,0)( 2 \sqrt { 10 } , 0 )
D) x249+y29=1\frac { x ^ { 2 } } { 49 } + \frac { y ^ { 2 } } { 9 } = 1
foci at (7,0)( - 7,0 ) and (7,0)( 7,0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
15
Graph Ellipses Not Centered at the Origin
4(x1)2+16(y2)2=644 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
16
Graph the ellipse and locate the foci.
9x2+4y2=369 x ^ { 2 } + 4 y ^ { 2 } = 36
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )

A) foci at (0,5)( 0 , \sqrt { 5 } ) and (0,5)( 0 , - \sqrt { 5 } )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
B) foci at (5,0)( \sqrt { 5 } , 0 ) and (5,0)( - \sqrt { 5 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
C) foci at (13,0)( \sqrt { 13 } , 0 ) and (13,0)( - \sqrt { 13 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
D) foci at (23,0)( 2 \sqrt { 3 } , 0 ) and (23,0)( - 2 \sqrt { 3 } , 0 )
 <strong>Graph the ellipse and locate the foci.  9 x ^ { 2 } + 4 y ^ { 2 } = 36   </strong> A) foci at  ( 0 , \sqrt { 5 } )  and  ( 0 , - \sqrt { 5 } )    B) foci at  ( \sqrt { 5 } , 0 )  and  ( - \sqrt { 5 } , 0 )    C) foci at  ( \sqrt { 13 } , 0 )  and  ( - \sqrt { 13 } , 0 )    D) foci at  ( 2 \sqrt { 3 } , 0 )  and  ( - 2 \sqrt { 3 } , 0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
17
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (0,2),(0,2);y( 0 , - 2 ) , ( 0,2 ) ; y -intercepts: 5- 5 and 5

A) x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
B) x225+y221=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 21 } = 1
C) x24+y221=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 21 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
18
Find the standard form of the equation of the ellipse satisfying the given conditions.
Endpoints of major axis: (-10, -4)and (6, -4); endpoints of minor axis: (-2, -8)and (-2, 0) A) (x+2)264+(y+4)216=1\frac { ( x + 2 ) ^ { 2 } } { 64 } + \frac { ( y + 4 ) ^ { 2 } } { 16 } = 1
B) (x+4)216+(y+2)264=1\frac { ( x + 4 ) ^ { 2 } } { 16 } + \frac { ( y + 2 ) ^ { 2 } } { 64 } = 1
C) (x2)264+(y4)216=0\frac { ( x - 2 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 0
D) (x2)264+(y4)216=1\frac { ( x - 2 ) ^ { 2 } } { 64 } + \frac { ( y - 4 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
19
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (2,0),(2,0);x( - 2,0 ) , ( 2,0 ) ; x -intercepts: 5- 5 and 5

A) x225+y221=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 21 } = 1
B) x221+y225=1\frac { x ^ { 2 } } { 21 } + \frac { y ^ { 2 } } { 25 } = 1
C) x24+y221=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 21 } = 1
D) x24+y225=1\frac { x ^ { 2 } } { 4 } + \frac { y ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
20
Find the standard form of the equation of the ellipse satisfying the given conditions.
Foci: (3,0),(3,0)( - 3,0 ) , ( 3,0 ) ; vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )

A) x216+y27=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 7 } = 1
B) x27+y216=1\frac { x ^ { 2 } } { 7 } + \frac { y ^ { 2 } } { 16 } = 1
C) x29+y27=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 7 } = 1
D) x29+y216=1\frac { x ^ { 2 } } { 9 } + \frac { y ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
21
Find the foci of the ellipse whose equation is given.
25(x+3)2+36(y+1)2=90025 ( x + 3 ) ^ { 2 } + 36 ( y + 1 ) ^ { 2 } = 900

A) foci at (3+11,1)( - 3 + \sqrt { 11 } , - 1 ) and (311,1)( - 3 - \sqrt { 11 } , - 1 )
B) foci at (1+11,3)( - 1 + \sqrt { 11 } , - 3 ) and (111,3)( - 1 - \sqrt { 11 } , - 3 )
C) foci at (11,1)( - \sqrt { 11 } , - 1 ) and (11,1)( \sqrt { 11 } , - 1 )
D) foci at (3+11,3)( - 3 + \sqrt { 11 } , - 3 ) and (311,3)( - 3 - \sqrt { 11 } , - 3 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
22
Find the vertices and locate the foci for the hyperbola whose equation is given.
x2144y24=1\frac { \mathrm { x } ^ { 2 } } { 144 } - \frac { \mathrm { y } ^ { 2 } } { 4 } = 1

A) vertices: (12,0),(12,0)( - 12,0 ) , ( 12,0 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
B) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
C) vertices: (0,12),(0,12)( 0 , - 12 ) , ( 0,12 )
foci: (237,0),(237,0)( - 2 \sqrt { 37 } , 0 ) , ( 2 \sqrt { 37 } , 0 )
D) vertices: (12,0),(12,0)( - 12,0 ) , ( 12,0 )
foci: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
23
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 38 feet and the height of the arch over the center of the roadway is 11 feet. Two trucks plan to
Use this road. They are both 8 feet wide. Truck 1 has an overall height of 10 feet and Truck 2 has an overall
Height of 9 feet. Draw a rough sketch of the situation and determine which of the trucks can pass under the
Bridge.

A)Both Truck 1 and Truck 2 can pass under the bridge.
B)Neither Truck 1 nor Truck 2 can pass under the bridge.
C)Truck 1 can pass under the bridge, but Truck 2 cannot.
D)Truck 2 can pass under the bridge, but Truck 1 cannot.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
24
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 30 feet and the height of the arch over the center of the roadway is 13 feet. Two trucks plan to
Use this road. They are both 10 feet wide. Truck 1 has an overall height of 12 feet and Truck 2 has an
Overall height of 13 feet. Draw a rough sketch of the situation and determine which of the trucks can pass
Under the bridge.

A)Truck 1 can pass under the bridge, but Truck 2 cannot.
B)Both Truck 1 and Truck 2 can pass under the bridge.
C)Neither Truck 1 nor Truck 2 can pass under the bridge.
D)Truck 2 can pass under the bridge, but Truck 1 cannot.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
25
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x225+y29=1y=3\left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\y = 3\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 9 } = 1 \\ y = 3 \end{array} \right.    </strong> A)  \{ ( 0,3 ) \}  B)  \{ ( 3,3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) , ( 0 , - 3 ) \}

A) {(0,3)}\{ ( 0,3 ) \}
B) {(3,3)}\{ ( 3,3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
26
Find the foci of the ellipse whose equation is given.
(x3)225+(y+2)236=1\frac { ( x - 3 ) ^ { 2 } } { 25 } + \frac { ( y + 2 ) ^ { 2 } } { 36 } = 1

A) foci at (3,211)( 3 , - 2 - \sqrt { 11 } ) and (3,2+11)( 3 , - 2 + \sqrt { 11 } )
B) foci at (2,311)( - 2,3 - \sqrt { 11 } ) and (2,3+11)( - 2,3 + \sqrt { 11 } )
C) foci at (3,211)( - 3 , - 2 - \sqrt { 11 } ) and (3,2+11)( - 3 , - 2 + \sqrt { 11 } )
D) foci at (4,211)( 4 , - 2 - \sqrt { 11 } ) and (4,2+11)( 4 , - 2 + \sqrt { 11 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
27
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x2+y2=25x+y=7\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\x + y = 7\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\ x + y = 7 \end{array} \right.    </strong> A)  \{ ( 4,3 ) , ( 3,4 ) \}  B)  \{ ( - 4,3 ) , ( - 3,4 ) \}  C)  \{ ( 4 , - 3 ) , ( 3 , - 4 ) \}  D)  \{ ( - 4 , - 3 ) , ( - 3 , - 4 ) \}

A) {(4,3),(3,4)}\{ ( 4,3 ) , ( 3,4 ) \}
B) {(4,3),(3,4)}\{ ( - 4,3 ) , ( - 3,4 ) \}
C) {(4,3),(3,4)}\{ ( 4 , - 3 ) , ( 3 , - 4 ) \}
D) {(4,3),(3,4)}\{ ( - 4 , - 3 ) , ( - 3 , - 4 ) \}
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
28
Find the vertices and locate the foci for the hyperbola whose equation is given.
y=±x26y = \pm \sqrt { x ^ { 2 } - 6 }

A) vertices: (6,0),(6,0)( - \sqrt { 6 } , 0 ) , ( \sqrt { 6 } , 0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
B) vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (6,0),(6,0)( - \sqrt { 6 } , 0 ) , ( \sqrt { 6 } , 0 )
C) vertices: (6,0),(6,0)( - 6,0 ) , ( 6,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
D) vertices: (0,6),(0,6)( 0 , - \sqrt { 6 } ) , ( 0 , \sqrt { 6 } )
foci: (0,23),(0,23)( 0 , - 2 \sqrt { 3 } ) , ( 0,2 \sqrt { 3 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
29
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
{x2+y2=2525x2+16y2=400\left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\25 x ^ { 2 } + 16 y ^ { 2 } = 400\end{array} \right.
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \left\{ \begin{array} { l } x ^ { 2 } + y ^ { 2 } = 25 \\ 25 x ^ { 2 } + 16 y ^ { 2 } = 400 \end{array} \right.    </strong> A)  \{ ( 0,5 ) , ( 0 , - 5 ) \}  B)  \{ ( 5,0 ) , ( - 5,0 ) \}  C)  \{ ( 0,4 ) , ( 0 , - 4 ) \}  D)  \{ ( 4,0 ) , ( - 4,0 ) \}

A) {(0,5),(0,5)}\{ ( 0,5 ) , ( 0 , - 5 ) \}
B) {(5,0),(5,0)}\{ ( 5,0 ) , ( - 5,0 ) \}
C) {(0,4),(0,4)}\{ ( 0,4 ) , ( 0 , - 4 ) \}
D) {(4,0),(4,0)}\{ ( 4,0 ) , ( - 4,0 ) \}
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
30
Convert the equation to the standard form for an ellipse by completing the square on x and y.
25x2+16y2100x+96y156=025 x ^ { 2 } + 16 y ^ { 2 } - 100 x + 96 y - 156 = 0

A) (x2)216+(y+3)225=1\frac { ( x - 2 ) ^ { 2 } } { 16 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
B) (x+3)216+(y2)225=1\frac { ( x + 3 ) ^ { 2 } } { 16 } + \frac { ( y - 2 ) ^ { 2 } } { 25 } = 1
C) (x2)225+(y+3)216=1\frac { ( x - 2 ) ^ { 2 } } { 25 } + \frac { ( y + 3 ) ^ { 2 } } { 16 } = 1
D) (x+2)216+(y3)225=1\frac { ( x + 2 ) ^ { 2 } } { 16 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
31
Graph the semi-ellipse.
y=169x2y = - \sqrt { 16 - 9 x ^ { 2 } }
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)

A)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)
B)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)
C)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)
D)
 <strong>Graph the semi-ellipse.  y = - \sqrt { 16 - 9 x ^ { 2 } }   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
32
Find the vertices and locate the foci for the hyperbola whose equation is given.
y2100x2121=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 121 } = 1

A) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (0,221),(0,221)( 0 , - \sqrt { 221 } ) , ( 0 , \sqrt { 221 } )
B) vertices: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
foci: (221,0),(221,0)( - \sqrt { 221 } , 0 ) , ( \sqrt { 221 } , 0 )
C) vertices: (0,10),(0,10)( 0 , - 10 ) , ( 0,10 )
foci: (221,0),(221,0)( - \sqrt { 221 } , 0 ) , ( \sqrt { 221 } , 0 )
D) vertices: (10,0),(10,0)( - 10,0 ) , ( 10,0 )
foci: (11,0),(11,0)( - 11,0 ) , ( 11,0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
33
Graph Ellipses Not Centered at the Origin
16(x1)2+4(y2)2=6416 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)

A)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
B)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
C)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
D)
 <strong>Graph Ellipses Not Centered at the Origin  16 ( x - 1 ) ^ { 2 } + 4 ( y - 2 ) ^ { 2 } = 64    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
34
Solve Applied Problems Involving Ellipses
Solve the problem.
The arch beneath a bridge is semi-elliptical, a one-way roadway passes under the arch. The width of the roadway is 30 feet and the height of the arch over the center of the roadway is 13 feet. Two trucks plan to
Use this road. They are both 12 feet wide. Truck 1 has an overall height of 12 feet and Truck 2 has an
Overall height of 11 feet. Draw a rough sketch of the situation and determine which of the trucks can pass
Under the bridge.

A)Truck 2 can pass under the bridge, but Truck 1 cannot.
B)Both Truck 1 and Truck 2 can pass under the bridge.
C)Neither Truck 1 nor Truck 2 can pass under the bridge.
D)Truck 1 can pass under the bridge, but Truck 2 cannot.
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
35
Find the foci of the ellipse whose equation is given.
(x3)236+(y1)216=1\frac { ( x - 3 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1

A) foci at (3+25,1)( 3 + 2 \sqrt { 5 } , 1 ) and (325,1)( 3 - 2 \sqrt { 5 } , 1 )
B) foci at (1+25,3)( 1 + 2 \sqrt { 5 } , 3 ) and (125,3)( 1 - 2 \sqrt { 5 } , 3 )
C) foci at (25,1)( - 2 \sqrt { 5 } , 1 ) and (25,1)( 2 \sqrt { 5 } , 1 )
D) foci at (3+25,3)( 3 + 2 \sqrt { 5 } , 3 ) and (325,3)( 3 - 2 \sqrt { 5 } , 3 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
36
Find the foci of the ellipse whose equation is given.
36(x1)2+25(y3)2=90036 ( \mathrm { x } - 1 ) ^ { 2 } + 25 ( \mathrm { y } - 3 ) ^ { 2 } = 900

A) foci at (1,311)( 1,3 - \sqrt { 11 } ) and (1,3+11)( 1,3 + \sqrt { 11 } )
B) foci at (3,111)( 3,1 - \sqrt { 11 } ) and (3,1+11)( 3,1 + \sqrt { 11 } )
C) foci at (1,311)( - 1,3 - \sqrt { 11 } ) and (1,3+11)( - 1,3 + \sqrt { 11 } )
D) foci at (2,311)( 2,3 - \sqrt { 11 } ) and (2,3+11)( 2,3 + \sqrt { 11 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
37
Convert the equation to the standard form for an ellipse by completing the square on x and y.
25x2+36y250x216y551=025 x ^ { 2 } + 36 y ^ { 2 } - 50 x - 216 y - 551 = 0

A) (x1)236+(y3)225=1\frac { ( x - 1 ) ^ { 2 } } { 36 } + \frac { ( y - 3 ) ^ { 2 } } { 25 } = 1
B) (x3)236+(y1)225=1\frac { ( x - 3 ) ^ { 2 } } { 36 } + \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
C) (x1)225+(y3)236=1\frac { ( x - 1 ) ^ { 2 } } { 25 } + \frac { ( y - 3 ) ^ { 2 } } { 36 } = 1
D) (x+1)236+(y+3)225=1\frac { ( x + 1 ) ^ { 2 } } { 36 } + \frac { ( y + 3 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
38
Find the vertices and locate the foci for the hyperbola whose equation is given.
16x24y2=6416 x ^ { 2 } - 4 y ^ { 2 } = 64

A) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
B) vertices: (0,2),(0,2)( 0 , - 2 ) , ( 0,2 )
foci: (0,25),(0,25)( 0 , - 2 \sqrt { 5 } ) , ( 0,2 \sqrt { 5 } )
C) vertices: (2,0),(2,0)( - 2,0 ) , ( 2,0 )
foci: (23,0),(23,0)( - 2 \sqrt { 3 } , 0 ) , ( 2 \sqrt { 3 } , 0 )
D) vertices: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
foci: (25,0),(25,0)( - 2 \sqrt { 5 } , 0 ) , ( 2 \sqrt { 5 } , 0 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
39
Write Equations of Hyperbolas in Standard Form
Foci: (-5, 0), (5, 0); vertices: (-2, 0), (2, 0) A) x24y221=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 21 } = 1
B) y24x221=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 21 } = 1
C) x24y225=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 25 } = 1
D) y24x225=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
40
Find the vertices and locate the foci for the hyperbola whose equation is given.
25y29x2=22525 \mathrm { y } ^ { 2 } - 9 \mathrm { x } ^ { 2 } = 225

A) vertices: (0,3),(0,3)( 0 , - 3 ) , ( 0,3 )
foci: (0,34),(0,34)( 0 , - \sqrt { 34 } ) , ( 0 , \sqrt { 34 } )
B) vertices: (3,0),(3,0)( - 3,0 ) , ( 3,0 )
foci: (34,0),(34,0)( - \sqrt { 34 } , 0 ) , ( \sqrt { 34 } , 0 )
C) vertices: (5,0),(5,0)( - 5,0 ) , ( 5,0 )
foci: (4,0),(4,0)( - 4,0 ) , ( 4,0 )
D) vertices: (0,5),(0,5)( 0 , - 5 ) , ( 0,5 )
foci: (0,34),(0,34)( 0 , - \sqrt { 34 } ) , ( 0 , \sqrt { 34 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
41
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x

A) Asymptotes: y=±35xy = \pm \frac { 3 } { 5 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x
B) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x
C) Asymptotes: y=±35x\mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x
D) Asymptotes: y=±53xy = \pm \frac { 5 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1    </strong> A) Asymptotes:  y = \pm \frac { 3 } { 5 } x    B) Asymptotes:  y = \pm \frac { 5 } { 3 } x    C) Asymptotes:  \mathrm { y } = \pm \frac { 3 } { 5 } \mathrm { x }    D) Asymptotes:  y = \pm \frac { 5 } { 3 } x
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
42
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1  B)  \frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1  D)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1

A) x225y29=1\frac { x ^ { 2 } } { 25 } - \frac { y ^ { 2 } } { 9 } = 1
B) y225x29=1\frac { y ^ { 2 } } { 25 } - \frac { x ^ { 2 } } { 9 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D) y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
43
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(x+4)24(y4)2=4( x + 4 ) ^ { 2 } - 4 ( y - 4 ) ^ { 2 } = 4

A) Center: (4,4)( - 4,4 ) ; Vertices: (6,4)( - 6,4 ) and (2,4)( - 2,4 ) ; Foci: (45,4)( - 4 - \sqrt { 5 } , 4 ) and (4+5,4)( - 4 + \sqrt { 5 } , 4 )
B) Center: (4,4)( 4 , - 4 ) ; Vertices: (2,4)( 2 , - 4 ) and (6,4)( 6 , - 4 ) ; Foci: (45,4)( 4 - \sqrt { 5 } , 4 ) and (4+5,4)( 4 + \sqrt { 5 } , 4 )
C) Center: (4,4)( - 4,4 ) ; Vertices: (5,5)( - 5,5 ) and (1,5)( - 1,5 ) ; Foci: (35,5)( - 3 - \sqrt { 5 } , 5 ) and (3+5,5)( - 3 + \sqrt { 5 } , 5 )
D) Center: (4,4)( - 4,4 ) ; Vertices: (2,4)( 2,4 ) and (2,4)( - 2,4 ) ; Foci: (5,4)( - \sqrt { 5 } , 4 ) and (5,4)( \sqrt { 5 } , 4 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
44
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
36y24x2=14436 y ^ { 2 } - 4 x ^ { 2 } = 144
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }

A) Asymptotes: y=±13xy = \pm \frac { 1 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }
B) Asymptotes: y=±3x\mathrm { y } = \pm 3 \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }
C) Asymptotes: y=±13x\mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }
D) Asymptotes: y=±3x\mathrm { y } = \pm 3 \mathrm { x }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  36 y ^ { 2 } - 4 x ^ { 2 } = 144    </strong> A) Asymptotes:  y = \pm \frac { 1 } { 3 } x    B) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }    C) Asymptotes:  \mathrm { y } = \pm \frac { 1 } { 3 } \mathrm { x }    D) Asymptotes:  \mathrm { y } = \pm 3 \mathrm { x }
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
45
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
4x29y2=364 x^{2}-9 y^{2}=36
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x

A) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x
B) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x
C) Asymptotes: y=±32xy = \pm \frac { 3 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x
D) Asymptotes: y=±23xy = \pm \frac { 2 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  4 x^{2}-9 y^{2}=36    </strong> A) Asymptotes:  y = \pm \frac { 2 } { 3 } x    B) Asymptotes:  y = \pm \frac { 3 } { 2 } x    C) Asymptotes:  y = \pm \frac { 3 } { 2 } x    D) Asymptotes:  y = \pm \frac { 2 } { 3 } x
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
46
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1  B)  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1  C)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1  D)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1

A) y24x29=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 9 } = 1
B) x24y29=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 9 } = 1
C) x29y24=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 4 } = 1
D) y29x24=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 4 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
47
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (0,6),(0,6)( 0 , - 6 ) , ( 0,6 ) ; asymptote: y=310x\mathrm { y } = \frac { 3 } { 10 } \mathrm { x }

A) y236x2400=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 400 } = 1
B) y2400x236=1\frac { y ^ { 2 } } { 400 } - \frac { x ^ { 2 } } { 36 } = 1
C) y236x2100=1\frac { y ^ { 2 } } { 36 } - \frac { x ^ { 2 } } { 100 } = 1
D) y2100x29=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
48
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
4y225x216y100x184=04 y ^ { 2 } - 25 x ^ { 2 } - 16 y - 100 x - 184 = 0

A) (y2)225(x+2)24=1\frac { ( y - 2 ) ^ { 2 } } { 25 } - \frac { ( x + 2 ) ^ { 2 } } { 4 } = 1
В) (y+2)225(x2)24=1\frac { ( y + 2 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
C) (y2)24(x+2)225=1\frac { ( y - 2 ) ^ { 2 } } { 4 } - \frac { ( x + 2 ) ^ { 2 } } { 25 } = 1
D) (x2)24(y+2)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 2 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
49
Write Equations of Hyperbolas in Standard Form
Endpoints of transverse axis: (4,0),(4,0)( - 4,0 ) , ( 4,0 ) ; foci: (9,0),(9,0)( - 9,0 ) , ( - 9,0 )

A) x216y265=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 65 } = 1
B) x265y216=1\frac { x ^ { 2 } } { 65 } - \frac { y ^ { 2 } } { 16 } = 1
C) x216y281=1\frac { x ^ { 2 } } { 16 } - \frac { y ^ { 2 } } { 81 } = 1
D) x281y216=1\frac { x ^ { 2 } } { 81 } - \frac { y ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
50
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
4x216y216x32y64=04 x ^ { 2 } - 16 y ^ { 2 } - 16 x - 32 y - 64 = 0

A) (x2)216(y+1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
B) (x+2)216(y+1)24=1\frac { ( x + 2 ) ^ { 2 } } { 16 } - \frac { ( y + 1 ) ^ { 2 } } { 4 } = 1
C) (x2)216(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
D) (x2)24(y+1)216=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y + 1 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
51
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
x2y24x+4y1=0x ^ { 2 } - y ^ { 2 } - 4 x + 4 y - 1 = 0

A) (x2)2(y2)2=1( x - 2 ) ^ { 2 } - ( y - 2 ) ^ { 2 } = 1
B) (y2)2(x2)2=1( y - 2 ) ^ { 2 } - ( x - 2 ) ^ { 2 } = 1
C) (x2)2+(y2)2=1( x - 2 ) ^ { 2 } + ( y - 2 ) ^ { 2 } = 1
D) (y2)216(x2)216=1\frac { ( y - 2 ) ^ { 2 } } { 16 } - \frac { ( x - 2 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
52
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(y1)29(x2)2100=1\frac { ( y - 1 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 100 } = 1

A) Center: (2,1)( 2,1 ) ; Vertices: (2,2)( 2 , - 2 ) and (2,4)( 2,4 ) ; Foci: (2,1109)( 2,1 - \sqrt { 109 } ) and (2,1+109)( 2,1 + \sqrt { 109 } )
B) Center: (2,1)( - 2 , - 1 ) ; Vertices: (2,4)( - 2 , - 4 ) and (2,2)( - 2,2 ) ; Foci: (2,1109)( - 2 , - 1 - \sqrt { 109 } ) and (2,1+109)( - 2 , - 1 + \sqrt { 109 } )
C) Center: (2,1)( 2,1 ) ; Vertices: (2,1109)( 2,1 - \sqrt { 109 } ) and (2,1+109)( 2,1 + \sqrt { 109 } ) ; Foci: (2,2)( 2 , - 2 ) and (2,4)( 2,4 )
D) Center: (2,1)( 2,1 ) ; Vertices: (2,1)( 2 , - 1 ) and (3,5)( 3,5 ) ; Foci: (2,2109)( 2,2 - \sqrt { 109 } ) and (3,2+109)( 3,2 + \sqrt { 109 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
53
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(x1)249(y+4)236=1\frac { ( x - 1 ) ^ { 2 } } { 49 } - \frac { ( y + 4 ) ^ { 2 } } { 36 } = 1

A) Center: (1,4)( 1 , - 4 ) ; Vertices: (6,4)( - 6 , - 4 ) and (8,4)( 8 , - 4 ) ; Foci: (185,4)( 1 - \sqrt { 85 } , - 4 ) and (1+85,4)( 1 + \sqrt { 85 } , - 4 )
B) Center: (1,4)( - 1,4 ) ; Vertices: (8,4)( - 8,4 ) and (6,4)( 6,4 ) ; Foci: (185,4)( - 1 - \sqrt { 85 } , 4 ) and (1+85,4)( - 1 + \sqrt { 85 } , 4 )
C) Center: (1,4)( 1 , - 4 ) ; Vertices: (6,4)( - 6,4 ) and (8,4)( 8,4 ) ; Foci: (185,4)( 1 - \sqrt { 85 } , 4 ) and (1+85,4)( 1 + \sqrt { 85 } , 4 )
D) Center: (1,4)( 1 , - 4 ) ; Vertices: (5,4)( - 5 , - 4 ) and (9,4)( 9 , - 4 ) ; Foci: (2+85,3)( 2 + \sqrt { 85 } , - 3 ) and (3+85,3)( - 3 + \sqrt { 85 } , - 3 )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
54
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x

A) Asymptotes: y=±2xy = \pm 2 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x
B) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x
C) Asymptotes: y=±2xy = \pm 2 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x
D) Asymptotes: y=±12xy = \pm \frac { 1 } { 2 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Asymptotes:  y = \pm 2 x    B) Asymptotes:  y = \pm \frac { 1 } { 2 } x    C) Asymptotes:  y = \pm 2 x    D) Asymptotes:  y = \pm \frac { 1 } { 2 } x
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
55
Write Equations of Hyperbolas in Standard Form
Center: (6,3);( 6,3 ) ; Focus: (4,3);( 4,3 ) ; Vertex: (5,3)( 5,3 )

A) (x6)2(y3)23=1( x - 6 ) ^ { 2 } - \frac { ( y - 3 ) ^ { 2 } } { 3 } = 1
B) (x6)23(y3)2=1\frac { ( x - 6 ) ^ { 2 } } { 3 } - ( y - 3 ) ^ { 2 } = 1
C) (x3)2(y6)23=1( x - 3 ) ^ { 2 } - \frac { ( y - 6 ) ^ { 2 } } { 3 } = 1
D) (x3)23(y6)2=1\frac { ( x - 3 ) ^ { 2 } } { 3 } - ( y - 6 ) ^ { 2 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
56
Find the standard form of the equation of the hyperbola.
 <strong>Find the standard form of the equation of the hyperbola.  </strong> A)  \frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 25 } = 1  B)  \frac { ( y - 1 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1  C)  \frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1  D)  \frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1

A) (y1)24(x2)225=1\frac { ( y - 1 ) ^ { 2 } } { 4 } - \frac { ( x - 2 ) ^ { 2 } } { 25 } = 1
B) (y1)225(x2)24=1\frac { ( y - 1 ) ^ { 2 } } { 25 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
C) (x2)225(y1)24=1\frac { ( x - 2 ) ^ { 2 } } { 25 } - \frac { ( y - 1 ) ^ { 2 } } { 4 } = 1
D) (x2)24(y1)225=1\frac { ( x - 2 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
57
Graph Hyperbolas Centered at the Origin
Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.
y=±x26y = \pm \sqrt { x ^ { 2 } - 6 }
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x

A) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x
B) Asymptotes: y=±3xy = \pm 3 x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x
C) Asymptotes: y=±13xy = \pm \frac { 1 } { 3 } x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x
D) Asymptotes: y=±xy = \pm x
 <strong>Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes.  y = \pm \sqrt { x ^ { 2 } - 6 }    </strong> A) Asymptotes:  y = \pm x    B) Asymptotes:  y = \pm 3 x    C) Asymptotes:  y = \pm \frac { 1 } { 3 } x    D) Asymptotes:  y = \pm x
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
58
Write Equations of Hyperbolas in Standard Form
Foci: (0, -5), (0, 5); vertices: (0, -3), (0, 3) A) y29x216=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 16 } = 1
B) x29y216=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 16 } = 1
C) x29y225=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { 25 } = 1
D) y29x225=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { 25 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
59
Graph Hyperbolas Not Centered at the Origin
Find the location of the center, vertices, and foci for the hyperbola described by the equation.
(y1)24(x3)2=4( y - 1 ) ^ { 2 } - 4 ( x - 3 ) ^ { 2 } = 4

A) Center: (3,1)( 3,1 ) ; Vertices: (3,1)( 3 , - 1 ) and (3,3)( 3,3 ) ; Foci: (3,15)( 3,1 - \sqrt { 5 } ) and (3,1+5)( 3,1 + \sqrt { 5 } )
B) Center: (3,1)( - 3 , - 1 ) ; Vertices: (3,3)( - 3 , - 3 ) and (3,1)( - 3,1 ) ; Foci: (3,15)( - 3 , - 1 - \sqrt { 5 } ) and (3,1+5)( - 3 , - 1 + \sqrt { 5 } )
C) Center: (3,1)( 3,1 ) ; Vertices: (3,2)( - 3 , - 2 ) and (3,2);( 3,2 ) ; Foci: (3,5)( 3 , - \sqrt { 5 } ) and (3,5)( 3 , \sqrt { 5 } )
D) Center: (3,1)( 3,1 ) ; Vertices: (4,0)( 4,0 ) and (4,4)( 4,4 ) ; Foci: (4,25)( 4,2 - \sqrt { 5 } ) and (4,2+5)( 4,2 + \sqrt { 5 } )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
60
Convert the equation to the standard form for a hyperbola by completing the square on x and y.
y216x24y+64x76=0\mathrm { y } ^ { 2 } - 16 \mathrm { x } ^ { 2 } - 4 \mathrm { y } + 64 \mathrm { x } - 76 = 0

A) (y2)216(x2)2=1\frac { ( y - 2 ) ^ { 2 } } { 16 } - ( x - 2 ) ^ { 2 } = 1
B) (x2)216(y2)2=1\frac { ( x - 2 ) ^ { 2 } } { 16 } - ( y - 2 ) ^ { 2 } = 1
C) (y4)216(x4)2=1\frac { ( y - 4 ) ^ { 2 } } { 16 } - ( x - 4 ) ^ { 2 } = 1
D) (x2)2(y2)216=1( x - 2 ) ^ { 2 } - \frac { ( y - 2 ) ^ { 2 } } { 16 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
61
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=8yx ^ { 2 } = - 8 y

A)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)
B)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)
C)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)
D)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = - 8 y </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
62
Solve Applied Problems Involving Hyperbolas
Solve the problem.
Two recording devices are set 2600 feet apart, with the device at point A to the west of the device at point B. At a point on a line between the devices, 400 feet from point B, a small amount of explosive is detonated. The recording devices record the time the sound reaches each one. How far directly north of site B should a second explosion be done so that the measured time difference recorded by the devices is the same as that for the first detonation?

A) 977.78977.78 feet
B) 2900.862900.86 feet
C) 1236.931236.93 feet
D) 1648.041648.04 feet
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
63
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+2)24(y+2)2=4( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( x + 2 ) ^ { 2 } - 4 ( y + 2 ) ^ { 2 } = 4   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
64
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
y2=12xy ^ { 2 } = - 12 x

A) focus: (3,0)( - 3,0 )
directrix: x=3x = 3
B) focus: (0,3)( 0 , - 3 )
directrix: y=3y = 3
C) focus: (3,0)( 3,0 )
directrix: x=3x = - 3
D) focus: (3,0)( - 3,0 )
directrix: y=3y = 3
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
65
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=40yx ^ { 2 } = 40 y

A) focus: (0,10)( 0,10 )
directrix: y=10y = - 10
B) focus: (10,0)( 10,0 )
directrix: y=10y = 10
C) focus: (10,0)( 10,0 )
directrix: x=10x = 10
D) focus: (0,10)( 0 , - 10 )
directrix: x=10\mathrm { x } = - 10
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
66
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
x2y2=9x2+y2=9\begin{array} { l } x ^ { 2 } - y ^ { 2 } = 9 \\x ^ { 2 } + y ^ { 2 } = 9\end{array}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{array} { l } x ^ { 2 } - y ^ { 2 } = 9 \\ x ^ { 2 } + y ^ { 2 } = 9 \end{array}    </strong> A)  \{ ( 3,0 ) , ( - 3,0 ) \}  B)  \{ ( 0,3 ) , ( 0 , - 3 ) \}  C)  \{ ( 3,0 ) \}  D)  \{ ( 0,3 ) \}

A) {(3,0),(3,0)}\{ ( 3,0 ) , ( - 3,0 ) \}
B) {(0,3),(0,3)}\{ ( 0,3 ) , ( 0 , - 3 ) \}
C) {(3,0)}\{ ( 3,0 ) \}
D) {(0,3)}\{ ( 0,3 ) \}
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
67
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=16yx ^ { 2 } = - 16 y

A) focus: (0,4)( 0 , - 4 )
directrix: y=4y = 4
B) focus: (8,0)( - 8,0 )
directrix: x=4x = 4
C) focus: (0,4)( 0 , - 4 )
directrix: y=4y = - 4
D) focus: (0,4)( 0,4 )
directrix: y=4y = - 4
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
68
Use the center, vertices, and asymptotes to graph the hyperbola.
(x+1)24(y1)216=1\frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)
A)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)
B)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)
C)
 Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( x + 1 ) ^ { 2 } } { 4 } - \frac { ( y - 1 ) ^ { 2 } } { 16 } = 1    A)   B)   C)   D)
D)
11ecbe12_bedf_f697_88d3_9faa96c6c770_TB1195_11
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
69
Solve Applied Problems Involving Hyperbolas
Solve the problem.
Two LORAN stations are positioned 278 miles apart along a straight shore. A ship records a time difference of 0.00086 seconds between the LORAN signals. (The radio signals travel at 186,000 miles per
Second.)Where will the ship reach shore if it were to follow the hyperbola corresponding to this time
Difference? If the ship is 200 miles offshore, what is the position of the ship?

A)59 miles from the master station, (161.9, 200)
B)80 miles from the master station, (200, 161.9)
C)59 miles from the master station, (200, 161.9)
D)80 miles from the master station, (161.9, 200)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
70
Additional Concepts
Use the relation's graph to determine its domain and range.
x216+y24=1\frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { x ^ { 2 } } { 16 } + \frac { y ^ { 2 } } { 4 } = 1   </strong> A) Domain:  [ - 4,4 ]  Range:  [ - 2,2 ]  B) Domain:  [ - 2,2 ]  Range:  [ - 4,4 ]  C) Domain:  ( - 4,4 )  Range:  ( - 2,2 )  D) Domain:  [ - 4,4 ]   \text { Range: }(-\infty, \infty)

A) Domain: [4,4][ - 4,4 ]
Range: [2,2][ - 2,2 ]
B) Domain: [2,2][ - 2,2 ]
Range: [4,4][ - 4,4 ]
C) Domain: (4,4)( - 4,4 )
Range: (2,2)( - 2,2 )
D) Domain: [4,4][ - 4,4 ]
 Range: (,)\text { Range: }(-\infty, \infty)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
71
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x=6y2x = 6 y ^ { 2 }

A) focus: (124,0)\left( \frac { 1 } { 24 } , 0 \right)
directrix: x=124x = - \frac { 1 } { 24 }
B) focus: (0,124)\left( 0 , \frac { 1 } { 24 } \right)
directrix: y=124\mathrm { y } = - \frac { 1 } { 24 }
C) focus: (16,0)\left( \frac { 1 } { 6 } , 0 \right)
directrix: x=16x = - \frac { 1 } { 6 }
D) focus: (124,0)\left( \frac { 1 } { 24 } , 0 \right)
directrix: x=124x = \frac { 1 } { 24 }
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
72
Use the center, vertices, and asymptotes to graph the hyperbola.
(y2)2(x1)2=3( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  ( y - 2 ) ^ { 2 } - ( x - 1 ) ^ { 2 } = 3   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
73
Use the center, vertices, and asymptotes to graph the hyperbola.
(y+4)24(x+3)2=4(y+4)^{2}-4(x+3)^{2}=4
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  (y+4)^{2}-4(x+3)^{2}=4    </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
74
Additional Concepts
Use the relation's graph to determine its domain and range.
x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1   </strong> A) Domain:  ( - \infty , - 2 ]  or  [ 2 , \infty )  Range:  ( - \infty , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 )  or  ( 2 , \infty )  C) Domain:  ( - \infty , - 2 ]  and  [ 2 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , \infty )  Range:  ( - \infty , \infty )

A) Domain: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,2)( - \infty , - 2 ) or (2,)( 2 , \infty )
C) Domain: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,)( - \infty , \infty )
Range: (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
75
Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate
system and finding points of intersection.
16x2+y2=16y216x2=16\begin{aligned}16 x ^ { 2 } + y ^ { 2 } & = 16 \\y ^ { 2 } - 16 x ^ { 2 } & = 16\end{aligned}
 <strong>Find the solution set for the system by graphing both of the system's equations in the same rectangular coordinate system and finding points of intersection.  \begin{aligned} 16 x ^ { 2 } + y ^ { 2 } & = 16 \\ y ^ { 2 } - 16 x ^ { 2 } & = 16 \end{aligned}    </strong> A)  \{ ( 0 , - 4 ) , ( 0,4 ) \}  B)  \{ ( 0 , - 4 ) \}  C)  \{ ( 0,16 ) \}  D)  \{ ( 4,0 ) , ( 4,0 ) \}

A) {(0,4),(0,4)}\{ ( 0 , - 4 ) , ( 0,4 ) \}
B) {(0,4)}\{ ( 0 , - 4 ) \}
C) {(0,16)}\{ ( 0,16 ) \}
D) {(4,0),(4,0)}\{ ( 4,0 ) , ( 4,0 ) \}
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
76
Use the center, vertices, and asymptotes to graph the hyperbola.
(y+2)29(x2)24=1\frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)

A)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
B)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
C)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
D)
 <strong>Use the center, vertices, and asymptotes to graph the hyperbola.  \frac { ( y + 2 ) ^ { 2 } } { 9 } - \frac { ( x - 2 ) ^ { 2 } } { 4 } = 1   </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
77
Solve Applied Problems Involving Hyperbolas
Solve the problem.
A satellite following the hyperbolic path shown in the picture turns rapidly at (0,3)( 0,3 ) and then moves closer and closer to the line y=52x\mathrm { y } = \frac { 5 } { 2 } \mathrm { x } as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at (0,0)( 0,0 ) .
 <strong>Solve Applied Problems Involving Hyperbolas Solve the problem. A satellite following the hyperbolic path shown in the picture turns rapidly at  ( 0,3 )  and then moves closer and closer to the line  \mathrm { y } = \frac { 5 } { 2 } \mathrm { x }  as it gets farther from the tracking station at the origin. Find the equation that describes the path of the satellite if the center of the hyperbola is at  ( 0,0 ) .   </strong> A)  \frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1  B)  \frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } = 1  C)  \frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1  D)  \frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1

A) y29x23625=1\frac { y ^ { 2 } } { 9 } - \frac { x ^ { 2 } } { \frac { 36 } { 25 } } = 1
B) x29y2(756)2=1\frac { x ^ { 2 } } { 9 } - \frac { y ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } = 1
C) y23625x29=1\frac { y ^ { 2 } } { \frac { 36 } { 25 } } - \frac { x ^ { 2 } } { 9 } = 1
D) x2(756)2y29=1\frac { x ^ { 2 } } { \left( \frac { 75 } { 6 } \right) ^ { 2 } } - \frac { y ^ { 2 } } { 9 } = 1
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
78
Additional Concepts
Use the relation's graph to determine its domain and range.
y24x225=1\frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1
 <strong>Additional Concepts Use the relation's graph to determine its domain and range.  \frac { y ^ { 2 } } { 4 } - \frac { x ^ { 2 } } { 25 } = 1   </strong> A) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 ]  or  [ 2 , \infty )  B) Domain:  ( - \infty , \infty )  Range:  ( - \infty , - 2 ]  and  [ 2 , \infty )  C) Domain:  ( - \infty , - 2 ]  or  [ 2 , \infty )  Range:  ( - \infty , \infty )  D) Domain:  ( - \infty , - 2 ]  and  [ 2 , \infty )  Range:  ( - \infty , \infty )

A) Domain: (,)( - \infty , \infty )
Range: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
B) Domain: (,)( - \infty , \infty )
Range: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
C) Domain: (,2]( - \infty , - 2 ] or [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
D) Domain: (,2]( - \infty , - 2 ] and [2,)[ 2 , \infty )
Range: (,)( - \infty , \infty )
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
79
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
y2=24xy ^ { 2 } = 24 x

A) focus: (6,0)( 6,0 )
directrix: x=6x = - 6
B) focus: (0,6)( 0,6 )
directrix: y=6y = - 6
C) focus: (6,0)( 6,0 )
directrix: x=6x = 6
D) focus: (0,6)( 0 , - 6 )
directrix: y=6y = - 6
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
80
Graph Parabolas with Vertices at the Origin
Find the focus and directrix of the parabola with the given equation.
x2=11yx ^ { 2 } = 11 y

A)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)
B)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)
C)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)
D)
 <strong>Graph Parabolas with Vertices at the Origin Find the focus and directrix of the parabola with the given equation.  x ^ { 2 } = 11 y </strong> A)   B)   C)   D)
Unlock Deck
Unlock for access to all 120 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 120 flashcards in this deck.