Exam 7: Conic Sections

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the standard form of the equation of the ellipse satisfying the given conditions. -Endpoints of major axis: (-10, -4)and (6, -4); endpoints of minor axis: (-2, -8)and (-2, 0)

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

A

Find the standard form of the equation of the hyperbola. -Find the standard form of the equation of the hyperbola. -

Free
(Multiple Choice)
5.0/5
(20)
Correct Answer:
Verified

A

Use the center, vertices, and asymptotes to graph the hyperbola. - (y+4)24(x+3)2=4(y+4)^{2}-4(x+3)^{2}=4  Use the center, vertices, and asymptotes to graph the hyperbola. - (y+4)^{2}-4(x+3)^{2}=4

Free
(Multiple Choice)
4.8/5
(35)
Correct Answer:
Verified

A

Convert the equation to the standard form for a hyperbola by completing the square on x and y. - 4x216y216x32y64=04 x ^ { 2 } - 16 y ^ { 2 } - 16 x - 32 y - 64 = 0

(Multiple Choice)
4.8/5
(33)

Graph Ellipses Not Centered at the Origin - 4(x1)2+16(y2)2=644 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64  Graph Ellipses Not Centered at the Origin - 4 ( x - 1 ) ^ { 2 } + 16 ( y - 2 ) ^ { 2 } = 64

(Multiple Choice)
4.9/5
(27)

Graph Hyperbolas Not Centered at the Origin Find the location of the center, vertices, and foci for the hyperbola described by the equation. - (x1)249(y+4)236=1\frac { ( x - 1 ) ^ { 2 } } { 49 } - \frac { ( y + 4 ) ^ { 2 } } { 36 } = 1

(Multiple Choice)
4.9/5
(33)

Additional Concepts Determine the direction in which the parabola opens, and the vertex. - y=x26x+5y = x ^ { 2 } - 6 x + 5

(Multiple Choice)
4.8/5
(33)

Write Equations of Ellipses in Standard Form -Write Equations of Ellipses in Standard Form -

(Multiple Choice)
4.9/5
(31)

Find the vertices and locate the foci for the hyperbola whose equation is given. - y2100x2121=1\frac { y ^ { 2 } } { 100 } - \frac { x ^ { 2 } } { 121 } = 1

(Multiple Choice)
5.0/5
(30)

Use the vertex and the direction in which the parabola opens to determine the relation's domain and range. - y=x2+2x4y = x ^ { 2 } + 2 x - 4

(Multiple Choice)
4.9/5
(40)

Graph the ellipse and locate the foci. - x225+y264=1\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1  Graph the ellipse and locate the foci. - \frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 64 } = 1

(Multiple Choice)
4.8/5
(41)

Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - (y+2)2=20(x+3)( y + 2 ) ^ { 2 } = 20 ( x + 3 )

(Multiple Choice)
4.8/5
(32)

Write Equations of Parabolas in Standard Form Find the standard form of the equation of the parabola using the information given. -Focus: (7,3)( - 7,3 ) ; Directrix: x=3x = 3

(Multiple Choice)
4.8/5
(40)

Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - (x1)2=7(y+2)( x - 1 ) ^ { 2 } = - 7 ( y + 2 )  Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - ( x - 1 ) ^ { 2 } = - 7 ( y + 2 )

(Multiple Choice)
4.7/5
(35)

Write Equations of Parabolas in Standard Form Find the standard form of the equation of the parabola using the information given. -Focus: (2,8);( 2,8 ) ; Directrix: y=0y = 0

(Multiple Choice)
4.7/5
(28)

Write Equations of Parabolas in Standard Form Find the standard form of the equation of the parabola using the information given. -Focus: (0,15)( 0 , - 15 ) ; Directrix: y=15\mathrm { y } = 15

(Multiple Choice)
4.8/5
(38)

Find the standard form of the equation of the ellipse satisfying the given conditions. -Foci: (0,4),(0,4)( 0 , - 4 ) , ( 0,4 ) ; vertices: (0,7),(0,7)( 0 , - 7 ) , ( 0,7 )

(Multiple Choice)
4.9/5
(30)

Graph Parabolas with Vertices Not at the Origin Find the vertex, focus, and directrix of the parabola with the given equation. - (y1)2=16x( \mathrm { y } - 1 ) ^ { 2 } = 16 \mathrm { x }

(Multiple Choice)
4.8/5
(36)

Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - x24y216=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1  Graph Hyperbolas Centered at the Origin Use vertices and asymptotes to graph the hyperbola. Find the equations of the asymptotes. - \frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 16 } = 1

(Multiple Choice)
4.9/5
(40)

Write Equations of Hyperbolas in Standard Form -Center: (6,3);( 6,3 ) ; Focus: (4,3);( 4,3 ) ; Vertex: (5,3)( 5,3 )

(Multiple Choice)
4.8/5
(34)
Showing 1 - 20 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)