Deck 9: Parametric Equations Polar Coordinates and Conic Sections

Full screen (f)
exit full mode
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t,y=3t2,t(,)x = t , \quad y = 3 t ^ { 2 } , \quad t \in ( - \infty , \infty )

A) y=x2,x(,), left to right y = x ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
B) y=3x,x(,), left to right y = 3 x , x \in ( - \infty , \infty ) \text {, left to right }
C) y=3x2,x(,), right to left y = 3 x ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
D) y=3x2,x(,), left to right y = 3 x ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
Use Space or
up arrow
down arrow
to flip the card.
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=1t,y=2t2,t0x = 1 - t , \quad y = - 2 t ^ { 2 } , \quad t \geq 0

A) y=2(x+1)2,x(,), right to left y = - 2 ( x + 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
B) y=2(x1)2,x(,), right to left y = - 2 ( x - 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
C) y=2(x1)2,x1, right to left y = - 2 ( x - 1 ) ^ { 2 } , x \leq 1 \text {, right to left }
D) y=2(x1)2,x(,), left to right y = - 2 ( x - 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3t+1,y=9t22,t(,)x = 3 t + 1 , \quad y = 9 t ^ { 2 } - 2 , \quad t \in ( - \infty , \infty )

A) y=(x1)2+2,x(,), left to right y = ( x - 1 ) ^ { 2 } + 2 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=(x1)22,x(,), right to left y = ( x - 1 ) ^ { 2 } - 2 , x \in ( - \infty , \infty ) \text {, right to left }
C) y=(x1)22,x(,), left to right y = ( x - 1 ) ^ { 2 } - 2 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=(x1)2+2,x(,), right to left y = ( x - 1 ) ^ { 2 } + 2 , x \in ( - \infty , \infty ) \text {, right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t,y=6t21,t[2,3]x = - 2 t , \quad y = 6 t ^ { 2 } - 1 , \quad t \in [ - 2,3 ]

A) y=32x2+1,x(,), left to right y = \frac { 3 } { 2 } x ^ { 2 } + 1 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=32x2+1,x(,), right to left y = \frac { 3 } { 2 } x ^ { 2 } + 1 , x \in ( - \infty , \infty ) \text {, right to left }
C) y=32x21,x(,), left to right y = \frac { 3 } { 2 } x ^ { 2 } - 1 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=32x21,6x4, right to left y = \frac { 3 } { 2 } x ^ { 2 } - 1 , - 6 \leq x \leq 4 \text {, right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t+1,y=3t,t[1,3]x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]

A) y=32x+1,1x7, left to right y = \frac { 3 } { 2 } x + 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
B) y=32x1,1x7, left to right y = \frac { 3 } { 2 } x - 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
C) y=32(x1),1x7, left to right y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \text { left to right }
D) y=32(x1),1x7, right to left y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t1,y=2t+5,t(,)x = t - 1 , \quad y = 2 t + 5 , \quad t \in ( - \infty , \infty )

A) y=2x7,x(,), left to right y = 2 x - 7 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=2x7,x(,), right to left y = 2 x - 7 , x \in ( - \infty , \infty ) , \quad \text { right to left }
C) y=2x+7,x(,), left to right y = 2 x + 7 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=2x+7,x(,), right to left y = 2 x + 7 , x \in ( - \infty , \infty ) , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4t,y=3t+1,t[2,1]x = - 4 t , \quad y = - 3 t + 1 , \quad t \in [ - 2,1 ]

A) y=34x+1,4x8, left to right y = \frac { 3 } { 4 } x + 1 , \quad - 4 \leq x \leq 8 , \quad \text { left to right }
B) y=34x1,4x8, left to right y = \frac { 3 } { 4 } x - 1 , \quad - 4 \leq x \leq 8 , \quad \text { left to right }
C) y=34x1,4x8, right to left y = \frac { 3 } { 4 } x - 1 , \quad - 4 \leq x \leq 8 , \quad \text { right to left }
D) y=34x+1,4x8, right to left y = \frac { 3 } { 4 } x + 1 , \quad - 4 \leq x \leq 8 , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t+1,y=et,t(,)x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )

A) y=ex+1,x(,), left to right y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, left to right }
B) y=ex1,x(,), left to right y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, left to right }
C) y=ex+1,x(,), right to left y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, right to left }
D) y=ex1,x(,), right to left y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2sint,y=2cost,t[0,2π]x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]

A) x2+y2=2, clockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { clockwise }
B) x2+y2=2, counterclockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { counterclockwise }
C) x2+y2=4, clockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { clockwise }
D) x2+y2=4, counterclockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { counterclockwise }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3cost,y=3sint,t[0,2π]x = 3 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

A) x2+y2=3, counterclockwise x ^ { 2 } + y ^ { 2 } = 3 , \quad \text { counterclockwise }
B) x2+y2=9, clockwise x ^ { 2 } + y ^ { 2 } = 9 , \quad \text { clockwise }
C) x2+y2=3, clockwise x ^ { 2 } + y ^ { 2 } = 3 , \quad \text { clockwise }
D) x2+y2=9, counterclockwise x ^ { 2 } + y ^ { 2 } = 9 , \quad \text { counterclockwise }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t1,y=3t2+2,t(,)x = - 2 t - 1 , \quad y = 3 t ^ { 2 } + 2 , \quad t \in ( - \infty , \infty )

A) y=34(x1)2+2,x(,), right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
B) y=34(x+1)22,x(,), right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
C) y=34(x1)22,x(,), right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
D) y=34(x+1)2+2,x(,), right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3sint,y=4cost,t[0,2π]x = 3 \sin t , \quad y = 4 \cos t , \quad t \in [ 0,2 \pi ]

A) 9x2+9y2=144, counterclockwise 9 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
B) 9x2+16y2=144, counterclockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { counterclockwise }
C) 16x2+9y2=144, counterclockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
D) 16x2+9y2=144, clockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { clockwise }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4cost,y=3sint,t[0,2π]x = 4 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

A) 16x2+9y2=144, counterclockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
B) 16x2+9y2=144, clockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { clockwise }
C) 9x2+16y2=144, counterclockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { counterclockwise }
D) 9x2+16y2=144, clockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { clockwise }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=sint,y=cos2t,t[π2,π2]x = \sin t , \quad y = \cos 2 t , \quad t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]

A) y=1+2x2,1x1, left to right y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=12x2,1x1, left to right y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
C) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cost,y=cos2t,t[0,π]x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]

A) y=2x2+1,1x1, left to right y = 2 x ^ { 2 } + 1 , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 \text {, right to left }
C) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=2x21,1x1, right to left y = 2 x ^ { 2 } - 1 , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.x = e2t, y = t, t ? 0

A) y=12lnx,x1, right to left y = \frac { 1 } { 2 } \ln x , \quad x \geq 1 \text {, right to left }
B) y=12lnx,x1, left to right y = \frac { 1 } { 2 } \ln x , \quad x \geq 1 \text {, left to right }
C) y=2lnx,x1, right to left y = 2 \ln x , \quad x \geq 1 , \quad \text { right to left }
D) y=2lnx,x1, left to right y = 2 \ln x , \quad x \geq 1 , \quad \text { left to right }
Question
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cos2t,y=3sin2t,t[0,π2]x = \cos ^ { 2 } t , \quad y = 3 \sin ^ { 2 } t , \quad t \in \left[ 0 , \frac { \pi } { 2 } \right]

A) y=33x,0x1, left to right y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, left to right }
B) y=3+3x,0x1, left to right y = 3 + 3 x , \quad 0 \leq x \leq 1 , \quad \text { left to right }
C) y=3x,0x1, left to right y = 3 - x , \quad 0 \leq x \leq 1 \text {, left to right }
D) y=33x,0x1, right to left y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, right to left }
Question
Find the equation of the tangent line to the parametric curve: x=2t+1,y=3t+4, at t=1x = 2 t + 1 , \quad y = 3 t + 4 , \quad \text { at } t = - 1

A) y=32x52y = \frac { 3 } { 2 } x - \frac { 5 } { 2 }
B) y=52x+32y = \frac { 5 } { 2 } x + \frac { 3 } { 2 }
C) y=32x+52y = \frac { 3 } { 2 } x + \frac { 5 } { 2 }
D) y=32x+52y = - \frac { 3 } { 2 } x + \frac { 5 } { 2 }
Question
Find the equation of the tangent line to the parametric curve: x=t+1,y=e2t, at t=0x = t + 1 , \quad y = e ^ { 2 t } , \quad \text { at } t = 0

A) y = 2x + 1
B) y = x - 2
C) y = 2x + 3
D) y = 2x - 1
Question
Find the equation of the tangent line to the parametric curve: x=t3,y=(3t)2, at t=1x = t ^ { 3 } , \quad y = ( 3 - t ) ^ { 2 } , \quad \text { at } t = 1

A) y=43x163y = - \frac { 4 } { 3 } x - \frac { 16 } { 3 }
B) y=43x+163y = \frac { 4 } { 3 } x + \frac { 16 } { 3 }
C) y=43x+163y = - \frac { 4 } { 3 } x + \frac { 16 } { 3 }
D) y=43x163y = \frac { 4 } { 3 } x - \frac { 16 } { 3 }
Question
Find the length of the parametric curve: x=etsint,y=etcost,t[0,1]x = e ^ { t } \sin t , \quad y = e ^ { t } \cos t , \quad \mathrm { t } \in [ 0,1 ]

A) 2(e+1)\sqrt { 2 } ( e + 1 )
B) 3(e1)\sqrt { 3 } ( e - 1 )
C) 2e\sqrt { 2 } e
D) 2(e1)\sqrt { 2 } ( e - 1 )
Question
Find the length of the parametric curve: x=e2tcost,y=e2tsint,t[0,1]x = e ^ { 2 t } \cos t , \quad y = e ^ { 2 t } \sin t , \quad \mathrm { t } \in [ 0,1 ]

A) 52(e1)\frac { \sqrt { 5 } } { 2 } ( e - 1 )
B) 52(e2+1)\frac { \sqrt { 5 } } { 2 } \left( e ^ { 2 } + 1 \right)
C) 32(e21)\frac { \sqrt { 3 } } { 2 } \left( e ^ { 2 } - 1 \right)
D) 52(e21)\frac { \sqrt { 5 } } { 2 } \left( e ^ { 2 } - 1 \right)
Question
Find the length of the parametric curve: x=t2,y=3t3,t[0,2]x = t ^ { 2 } , \quad y = 3 - t ^ { 3 } , \quad \mathrm { t } \in [ 0,2 ]
Question
Find the length of the parametric curve: x=2sin2t,y=3cos2t,t[0,3π2]x = 2 \sin ^ { 2 } t , \quad y = 3 \cos ^ { 2 } t , \quad \mathrm { t } \in \left[ 0 , \frac { 3 \pi } { 2 } \right]

A) 262\frac { \sqrt { 26 } } { 2 }
B) 524\frac { \sqrt { 52 } } { 4 }
C) 522\frac { \sqrt { 52 } } { 2 }
D) 542\frac { \sqrt { 54 } } { 2 }
Question
Find the rectangular coordinates for the following points whose polar coordinates are given:
A .(3, π\pi /6)

B. (-3, π\pi /2)
C. (3, 3 π\pi /2)

D. (3, - π\pi /6)
Question
Find the rectangular coordinates for the following points whose polar coordinates are given:
A .(2, - π\pi /2)
B.(2, -3 π\pi /2)
C .(2, π\pi /3)
D .(2, π\pi )
Question
Find the polar coordinates of the point (4, 4 3\sqrt { 3 } ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (4, π\pi /3)
B) (8, π\pi /6)
C) (8, π\pi /3)
D) (4, π\pi /6)
Question
Find the polar coordinates of the point (0, -2) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (2,π2)\left( 2 , \frac { \pi } { 2 } \right)
B) (2,3π2)\left( - 2 , \frac { 3 \pi } { 2 } \right)
C) (2,π3)\left( 2 , \frac { \pi } { 3 } \right)
D) (2,3π2)\left( 2 , \frac { 3 \pi } { 2 } \right)
Question
Find the polar coordinates of the point (-3, 0) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (3, π\pi /2)
B) (3, 2 π\pi )
C) (3, π\pi )
D) (3, 3 π\pi /2)
Question
Find the polar coordinates of the point (2, -2) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0
Question
Find the polar coordinates of the point (23,2)( - 2 \sqrt { 3 } , 2 ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (4,π6)\left( 4 , \frac { \pi } { 6 } \right)
B) (4,π3)\left( 4 , \frac { \pi } { 3 } \right)
C) (4,2π3)\left( 4 , \frac { 2 \pi } { 3 } \right)
D) (4,5π6)\left( 4 , \frac { 5 \pi } { 6 } \right)
Question
Convert the equation θ=π3\theta = \frac { \pi } { 3 } to rectangular coordinates.

A) y=13xy = \frac { 1 } { \sqrt { 3 } } x
B) y=3xy = \sqrt { 3 } x
C) y=22xy = \frac { \sqrt { 2 } } { 2 } x
D) y = x
Question
Convert the equation r=3cosθr = 3 \cos \theta to rectangular coordinates.

A) x2+3x+y2=0x ^ { 2 } + 3 x + y ^ { 2 } = 0
B) x2+y23y=0x ^ { 2 } + y ^ { 2 } - 3 y = 0
C) x2+y2+3y=0x ^ { 2 } + y ^ { 2 } + 3 y = 0
D) x23x+y2=0x ^ { 2 } - 3 x + y ^ { 2 } = 0
Question
Convert the equation r=2sinθr = 2 \sin \theta to rectangular coordinates.

A) x22x+y2=0x ^ { 2 } - 2 x + y ^ { 2 } = 0
B) x2+y2+2y=0x ^ { 2 } + y ^ { 2 } + 2 y = 0
C) x2+y22y=0x ^ { 2 } + y ^ { 2 } - 2 y = 0
D) x2+2x+y2=0x ^ { 2 } + 2 x + y ^ { 2 } = 0
Question
Convert the equation r=sin2θr = \sin 2 \theta to rectangular coordinates.
Question
Convert the equation r2=cosθr ^ { 2 } = \cos \theta to rectangular coordinates.
Question
Convert the equation r=5secθr = 5 \sec \theta to rectangular coordinates.

A) y = 5
B) y = 3
C) θ\theta = π\pi /4
D) x = 5
Question
Convert the equation r=2cscθr = - 2 \csc \theta to rectangular coordinates.

A) y = 2
B) x = 2
C) y = -2
D) x = -2
Question
Convert the equation x = -2 to polar coordinates.

A) r=2secθr = 2 \sec \theta
B) r=2cscθr = - 2 \csc \theta
C) r=2cscθr = 2 \csc \theta
D) r=2secθr = - 2 \sec \theta
Question
Convert the equation y = 4 to polar coordinates.

A) r=4secθr = 4 \sec \theta
B) r=4secθr = - 4 \sec \theta
C) r=4cscθr = 4 \csc \theta
D) r=4cosθr = 4 \cos \theta
Question
Convert the equation y = x to polar coordinates.

A) θ=π3\theta = \frac { \pi } { 3 }
B) θ=π6\theta = \frac { \pi } { 6 }
C) θ=π2\theta = \frac { \pi } { 2 }
D) θ=π4\theta = \frac { \pi } { 4 }
Question
Convert the equation y = x + 2 to polar coordinates.
Question
Find all the points of intersection of the curves, for 0θ<2π0 \leq \theta < 2 \pi : r=sinθ and r=cosθr = \sin \theta \text { and } r = \cos \theta
Question
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1+sinθ and r=1sinθr = 1 + \sin \theta \text { and } r = 1 - \sin \theta
Question
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1sinθ and r=1+cosθr = 1 - \sin \theta \text { and } r = 1 + \cos \theta
Question
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=2sin2θ and r=1r = 2 \sin 2 \theta \text { and } r = 1
Question
Find a definite integral expression that represents the area of the region inside one loop of the lemniscate r2=sin2θr ^ { 2 } = \sin 2 \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region inside both the cardioid r=1+sinθr = 1 + \sin \theta and outside the cardioid r=1sinθr = 1 - \sin \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region inside r=1+cosθr = 1 + \cos \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=2cos3θr = 2 \cos 3 \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=3sin2θr = 3 \sin 2 \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region inside the circle r=3sinθr = 3 \sin \theta and outside the cardioid r=1+sinθr = 1 + \sin \theta Then find the exact value of the integral.
Question
Find a definite integral expression that represents the area of the region between the loops of the limacon r=1+2cosθr = 1 + 2 \cos \theta Then find the exact value of the integral.
Question
Describe the conic: x2+4x+y28y24=0x ^ { 2 } + 4 x + y ^ { 2 } - 8 y - 24 = 0
Question
Describe the conic: x26x+4y3=0x ^ { 2 } - 6 x + 4 y - 3 = 0
Question
Describe the conic: 4x28x+2y212y3=04 x ^ { 2 } - 8 x + 2 y ^ { 2 } - 12 y - 3 = 0
Question
Write the equation of the ellipse with foci (0,±3)( 0 , \pm 3 ) and length of minor axis 8.
Question
Write the equation of the ellipse with foci (±2,0)( \pm 2,0 ) and length of major axis 6.
Question
Write the equation of the ellipse with foci (-1, 1) and (-1, 3) and length of minor axis 4.
Question
Find the equation of the hyperbola with foci ( ±3\pm 3 , 0) and vertices (±2,0)( \pm 2,0 )
Question
Find the equation of the hyperbola with foci (±3,0)( \pm 3,0 ) and asymptotes y = ±2x\pm 2 x
Question
Find the equation of a parabola with focus (-2, 0) and vertex (0, 0).
Question
Find the equation of a parabola with focus (0, 4) and vertex (0, 0).
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/63
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 9: Parametric Equations Polar Coordinates and Conic Sections
1
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t,y=3t2,t(,)x = t , \quad y = 3 t ^ { 2 } , \quad t \in ( - \infty , \infty )

A) y=x2,x(,), left to right y = x ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
B) y=3x,x(,), left to right y = 3 x , x \in ( - \infty , \infty ) \text {, left to right }
C) y=3x2,x(,), right to left y = 3 x ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
D) y=3x2,x(,), left to right y = 3 x ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
D
2
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=1t,y=2t2,t0x = 1 - t , \quad y = - 2 t ^ { 2 } , \quad t \geq 0

A) y=2(x+1)2,x(,), right to left y = - 2 ( x + 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
B) y=2(x1)2,x(,), right to left y = - 2 ( x - 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, right to left }
C) y=2(x1)2,x1, right to left y = - 2 ( x - 1 ) ^ { 2 } , x \leq 1 \text {, right to left }
D) y=2(x1)2,x(,), left to right y = - 2 ( x - 1 ) ^ { 2 } , x \in ( - \infty , \infty ) \text {, left to right }
C
3
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3t+1,y=9t22,t(,)x = 3 t + 1 , \quad y = 9 t ^ { 2 } - 2 , \quad t \in ( - \infty , \infty )

A) y=(x1)2+2,x(,), left to right y = ( x - 1 ) ^ { 2 } + 2 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=(x1)22,x(,), right to left y = ( x - 1 ) ^ { 2 } - 2 , x \in ( - \infty , \infty ) \text {, right to left }
C) y=(x1)22,x(,), left to right y = ( x - 1 ) ^ { 2 } - 2 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=(x1)2+2,x(,), right to left y = ( x - 1 ) ^ { 2 } + 2 , x \in ( - \infty , \infty ) \text {, right to left }
C
4
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t,y=6t21,t[2,3]x = - 2 t , \quad y = 6 t ^ { 2 } - 1 , \quad t \in [ - 2,3 ]

A) y=32x2+1,x(,), left to right y = \frac { 3 } { 2 } x ^ { 2 } + 1 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=32x2+1,x(,), right to left y = \frac { 3 } { 2 } x ^ { 2 } + 1 , x \in ( - \infty , \infty ) \text {, right to left }
C) y=32x21,x(,), left to right y = \frac { 3 } { 2 } x ^ { 2 } - 1 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=32x21,6x4, right to left y = \frac { 3 } { 2 } x ^ { 2 } - 1 , - 6 \leq x \leq 4 \text {, right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
5
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t+1,y=3t,t[1,3]x = 2 t + 1 , \quad y = 3 t , \quad t \in [ - 1,3 ]

A) y=32x+1,1x7, left to right y = \frac { 3 } { 2 } x + 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
B) y=32x1,1x7, left to right y = \frac { 3 } { 2 } x - 1 , \quad - 1 \leq x \leq 7 , \text { left to right }
C) y=32(x1),1x7, left to right y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \text { left to right }
D) y=32(x1),1x7, right to left y = \frac { 3 } { 2 } ( x - 1 ) , \quad - 1 \leq \mathrm { x } \leq 7 , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
6
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t1,y=2t+5,t(,)x = t - 1 , \quad y = 2 t + 5 , \quad t \in ( - \infty , \infty )

A) y=2x7,x(,), left to right y = 2 x - 7 , x \in ( - \infty , \infty ) \text {, left to right }
B) y=2x7,x(,), right to left y = 2 x - 7 , x \in ( - \infty , \infty ) , \quad \text { right to left }
C) y=2x+7,x(,), left to right y = 2 x + 7 , x \in ( - \infty , \infty ) \text {, left to right }
D) y=2x+7,x(,), right to left y = 2 x + 7 , x \in ( - \infty , \infty ) , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
7
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4t,y=3t+1,t[2,1]x = - 4 t , \quad y = - 3 t + 1 , \quad t \in [ - 2,1 ]

A) y=34x+1,4x8, left to right y = \frac { 3 } { 4 } x + 1 , \quad - 4 \leq x \leq 8 , \quad \text { left to right }
B) y=34x1,4x8, left to right y = \frac { 3 } { 4 } x - 1 , \quad - 4 \leq x \leq 8 , \quad \text { left to right }
C) y=34x1,4x8, right to left y = \frac { 3 } { 4 } x - 1 , \quad - 4 \leq x \leq 8 , \quad \text { right to left }
D) y=34x+1,4x8, right to left y = \frac { 3 } { 4 } x + 1 , \quad - 4 \leq x \leq 8 , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
8
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=t+1,y=et,t(,)x = t + 1 , \quad y = e ^ { t } , \quad t \in ( - \infty , \infty )

A) y=ex+1,x(,), left to right y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, left to right }
B) y=ex1,x(,), left to right y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, left to right }
C) y=ex+1,x(,), right to left y = e ^ { x + 1 } , x \in ( - \infty , \infty ) \text {, right to left }
D) y=ex1,x(,), right to left y = e ^ { x - 1 } , x \in ( - \infty , \infty ) \text {, right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
9
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2sint,y=2cost,t[0,2π]x = 2 \sin t , \quad y = 2 \cos t , \quad t \in [ 0,2 \pi ]

A) x2+y2=2, clockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { clockwise }
B) x2+y2=2, counterclockwise x ^ { 2 } + y ^ { 2 } = 2 , \quad \text { counterclockwise }
C) x2+y2=4, clockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { clockwise }
D) x2+y2=4, counterclockwise x ^ { 2 } + y ^ { 2 } = 4 , \quad \text { counterclockwise }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
10
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3cost,y=3sint,t[0,2π]x = 3 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

A) x2+y2=3, counterclockwise x ^ { 2 } + y ^ { 2 } = 3 , \quad \text { counterclockwise }
B) x2+y2=9, clockwise x ^ { 2 } + y ^ { 2 } = 9 , \quad \text { clockwise }
C) x2+y2=3, clockwise x ^ { 2 } + y ^ { 2 } = 3 , \quad \text { clockwise }
D) x2+y2=9, counterclockwise x ^ { 2 } + y ^ { 2 } = 9 , \quad \text { counterclockwise }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
11
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t1,y=3t2+2,t(,)x = - 2 t - 1 , \quad y = 3 t ^ { 2 } + 2 , \quad t \in ( - \infty , \infty )

A) y=34(x1)2+2,x(,), right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
B) y=34(x+1)22,x(,), right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
C) y=34(x1)22,x(,), right to left y = \frac { 3 } { 4 } ( x - 1 ) ^ { 2 } - 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
D) y=34(x+1)2+2,x(,), right to left y = \frac { 3 } { 4 } ( x + 1 ) ^ { 2 } + 2 , \quad x \in ( - \infty , \infty ) , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
12
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3sint,y=4cost,t[0,2π]x = 3 \sin t , \quad y = 4 \cos t , \quad t \in [ 0,2 \pi ]

A) 9x2+9y2=144, counterclockwise 9 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
B) 9x2+16y2=144, counterclockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { counterclockwise }
C) 16x2+9y2=144, counterclockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
D) 16x2+9y2=144, clockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { clockwise }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
13
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4cost,y=3sint,t[0,2π]x = 4 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

A) 16x2+9y2=144, counterclockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { counterclockwise }
B) 16x2+9y2=144, clockwise 16 x ^ { 2 } + 9 y ^ { 2 } = 144 , \quad \text { clockwise }
C) 9x2+16y2=144, counterclockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { counterclockwise }
D) 9x2+16y2=144, clockwise 9 x ^ { 2 } + 16 y ^ { 2 } = 144 , \quad \text { clockwise }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
14
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=sint,y=cos2t,t[π2,π2]x = \sin t , \quad y = \cos 2 t , \quad t \in \left[ - \frac { \pi } { 2 } , \frac { \pi } { 2 } \right]

A) y=1+2x2,1x1, left to right y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=12x2,1x1, left to right y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
C) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
15
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cost,y=cos2t,t[0,π]x = \cos t , \quad y = \cos 2 t , \quad t \in [ 0 , \pi ]

A) y=2x2+1,1x1, left to right y = 2 x ^ { 2 } + 1 , \quad - 1 \leq x \leq 1 , \quad \text { left to right }
B) y=1+2x2,1x1, right to left y = 1 + 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 \text {, right to left }
C) y=12x2,1x1, right to left y = 1 - 2 x ^ { 2 } , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
D) y=2x21,1x1, right to left y = 2 x ^ { 2 } - 1 , \quad - 1 \leq x \leq 1 , \quad \text { right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
16
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve.x = e2t, y = t, t ? 0

A) y=12lnx,x1, right to left y = \frac { 1 } { 2 } \ln x , \quad x \geq 1 \text {, right to left }
B) y=12lnx,x1, left to right y = \frac { 1 } { 2 } \ln x , \quad x \geq 1 \text {, left to right }
C) y=2lnx,x1, right to left y = 2 \ln x , \quad x \geq 1 , \quad \text { right to left }
D) y=2lnx,x1, left to right y = 2 \ln x , \quad x \geq 1 , \quad \text { left to right }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
17
Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=cos2t,y=3sin2t,t[0,π2]x = \cos ^ { 2 } t , \quad y = 3 \sin ^ { 2 } t , \quad t \in \left[ 0 , \frac { \pi } { 2 } \right]

A) y=33x,0x1, left to right y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, left to right }
B) y=3+3x,0x1, left to right y = 3 + 3 x , \quad 0 \leq x \leq 1 , \quad \text { left to right }
C) y=3x,0x1, left to right y = 3 - x , \quad 0 \leq x \leq 1 \text {, left to right }
D) y=33x,0x1, right to left y = 3 - 3 x , \quad 0 \leq x \leq 1 \text {, right to left }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
18
Find the equation of the tangent line to the parametric curve: x=2t+1,y=3t+4, at t=1x = 2 t + 1 , \quad y = 3 t + 4 , \quad \text { at } t = - 1

A) y=32x52y = \frac { 3 } { 2 } x - \frac { 5 } { 2 }
B) y=52x+32y = \frac { 5 } { 2 } x + \frac { 3 } { 2 }
C) y=32x+52y = \frac { 3 } { 2 } x + \frac { 5 } { 2 }
D) y=32x+52y = - \frac { 3 } { 2 } x + \frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
19
Find the equation of the tangent line to the parametric curve: x=t+1,y=e2t, at t=0x = t + 1 , \quad y = e ^ { 2 t } , \quad \text { at } t = 0

A) y = 2x + 1
B) y = x - 2
C) y = 2x + 3
D) y = 2x - 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
20
Find the equation of the tangent line to the parametric curve: x=t3,y=(3t)2, at t=1x = t ^ { 3 } , \quad y = ( 3 - t ) ^ { 2 } , \quad \text { at } t = 1

A) y=43x163y = - \frac { 4 } { 3 } x - \frac { 16 } { 3 }
B) y=43x+163y = \frac { 4 } { 3 } x + \frac { 16 } { 3 }
C) y=43x+163y = - \frac { 4 } { 3 } x + \frac { 16 } { 3 }
D) y=43x163y = \frac { 4 } { 3 } x - \frac { 16 } { 3 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
21
Find the length of the parametric curve: x=etsint,y=etcost,t[0,1]x = e ^ { t } \sin t , \quad y = e ^ { t } \cos t , \quad \mathrm { t } \in [ 0,1 ]

A) 2(e+1)\sqrt { 2 } ( e + 1 )
B) 3(e1)\sqrt { 3 } ( e - 1 )
C) 2e\sqrt { 2 } e
D) 2(e1)\sqrt { 2 } ( e - 1 )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
22
Find the length of the parametric curve: x=e2tcost,y=e2tsint,t[0,1]x = e ^ { 2 t } \cos t , \quad y = e ^ { 2 t } \sin t , \quad \mathrm { t } \in [ 0,1 ]

A) 52(e1)\frac { \sqrt { 5 } } { 2 } ( e - 1 )
B) 52(e2+1)\frac { \sqrt { 5 } } { 2 } \left( e ^ { 2 } + 1 \right)
C) 32(e21)\frac { \sqrt { 3 } } { 2 } \left( e ^ { 2 } - 1 \right)
D) 52(e21)\frac { \sqrt { 5 } } { 2 } \left( e ^ { 2 } - 1 \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
23
Find the length of the parametric curve: x=t2,y=3t3,t[0,2]x = t ^ { 2 } , \quad y = 3 - t ^ { 3 } , \quad \mathrm { t } \in [ 0,2 ]
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
24
Find the length of the parametric curve: x=2sin2t,y=3cos2t,t[0,3π2]x = 2 \sin ^ { 2 } t , \quad y = 3 \cos ^ { 2 } t , \quad \mathrm { t } \in \left[ 0 , \frac { 3 \pi } { 2 } \right]

A) 262\frac { \sqrt { 26 } } { 2 }
B) 524\frac { \sqrt { 52 } } { 4 }
C) 522\frac { \sqrt { 52 } } { 2 }
D) 542\frac { \sqrt { 54 } } { 2 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
25
Find the rectangular coordinates for the following points whose polar coordinates are given:
A .(3, π\pi /6)

B. (-3, π\pi /2)
C. (3, 3 π\pi /2)

D. (3, - π\pi /6)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
26
Find the rectangular coordinates for the following points whose polar coordinates are given:
A .(2, - π\pi /2)
B.(2, -3 π\pi /2)
C .(2, π\pi /3)
D .(2, π\pi )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
27
Find the polar coordinates of the point (4, 4 3\sqrt { 3 } ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (4, π\pi /3)
B) (8, π\pi /6)
C) (8, π\pi /3)
D) (4, π\pi /6)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
28
Find the polar coordinates of the point (0, -2) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (2,π2)\left( 2 , \frac { \pi } { 2 } \right)
B) (2,3π2)\left( - 2 , \frac { 3 \pi } { 2 } \right)
C) (2,π3)\left( 2 , \frac { \pi } { 3 } \right)
D) (2,3π2)\left( 2 , \frac { 3 \pi } { 2 } \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
29
Find the polar coordinates of the point (-3, 0) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (3, π\pi /2)
B) (3, 2 π\pi )
C) (3, π\pi )
D) (3, 3 π\pi /2)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
30
Find the polar coordinates of the point (2, -2) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
31
Find the polar coordinates of the point (23,2)( - 2 \sqrt { 3 } , 2 ) given in rectangular coordinates for θ[0,2π]\theta \in [ 0,2 \pi ] and r0r \geq 0

A) (4,π6)\left( 4 , \frac { \pi } { 6 } \right)
B) (4,π3)\left( 4 , \frac { \pi } { 3 } \right)
C) (4,2π3)\left( 4 , \frac { 2 \pi } { 3 } \right)
D) (4,5π6)\left( 4 , \frac { 5 \pi } { 6 } \right)
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
32
Convert the equation θ=π3\theta = \frac { \pi } { 3 } to rectangular coordinates.

A) y=13xy = \frac { 1 } { \sqrt { 3 } } x
B) y=3xy = \sqrt { 3 } x
C) y=22xy = \frac { \sqrt { 2 } } { 2 } x
D) y = x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
33
Convert the equation r=3cosθr = 3 \cos \theta to rectangular coordinates.

A) x2+3x+y2=0x ^ { 2 } + 3 x + y ^ { 2 } = 0
B) x2+y23y=0x ^ { 2 } + y ^ { 2 } - 3 y = 0
C) x2+y2+3y=0x ^ { 2 } + y ^ { 2 } + 3 y = 0
D) x23x+y2=0x ^ { 2 } - 3 x + y ^ { 2 } = 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
34
Convert the equation r=2sinθr = 2 \sin \theta to rectangular coordinates.

A) x22x+y2=0x ^ { 2 } - 2 x + y ^ { 2 } = 0
B) x2+y2+2y=0x ^ { 2 } + y ^ { 2 } + 2 y = 0
C) x2+y22y=0x ^ { 2 } + y ^ { 2 } - 2 y = 0
D) x2+2x+y2=0x ^ { 2 } + 2 x + y ^ { 2 } = 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
35
Convert the equation r=sin2θr = \sin 2 \theta to rectangular coordinates.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
36
Convert the equation r2=cosθr ^ { 2 } = \cos \theta to rectangular coordinates.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
37
Convert the equation r=5secθr = 5 \sec \theta to rectangular coordinates.

A) y = 5
B) y = 3
C) θ\theta = π\pi /4
D) x = 5
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
38
Convert the equation r=2cscθr = - 2 \csc \theta to rectangular coordinates.

A) y = 2
B) x = 2
C) y = -2
D) x = -2
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
39
Convert the equation x = -2 to polar coordinates.

A) r=2secθr = 2 \sec \theta
B) r=2cscθr = - 2 \csc \theta
C) r=2cscθr = 2 \csc \theta
D) r=2secθr = - 2 \sec \theta
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
40
Convert the equation y = 4 to polar coordinates.

A) r=4secθr = 4 \sec \theta
B) r=4secθr = - 4 \sec \theta
C) r=4cscθr = 4 \csc \theta
D) r=4cosθr = 4 \cos \theta
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
41
Convert the equation y = x to polar coordinates.

A) θ=π3\theta = \frac { \pi } { 3 }
B) θ=π6\theta = \frac { \pi } { 6 }
C) θ=π2\theta = \frac { \pi } { 2 }
D) θ=π4\theta = \frac { \pi } { 4 }
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
42
Convert the equation y = x + 2 to polar coordinates.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
43
Find all the points of intersection of the curves, for 0θ<2π0 \leq \theta < 2 \pi : r=sinθ and r=cosθr = \sin \theta \text { and } r = \cos \theta
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
44
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1+sinθ and r=1sinθr = 1 + \sin \theta \text { and } r = 1 - \sin \theta
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
45
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=1sinθ and r=1+cosθr = 1 - \sin \theta \text { and } r = 1 + \cos \theta
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
46
Find all the points of intersection of the curves for 0θ<2π0 \leq \theta < 2 \pi : r=2sin2θ and r=1r = 2 \sin 2 \theta \text { and } r = 1
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
47
Find a definite integral expression that represents the area of the region inside one loop of the lemniscate r2=sin2θr ^ { 2 } = \sin 2 \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
48
Find a definite integral expression that represents the area of the region inside both the cardioid r=1+sinθr = 1 + \sin \theta and outside the cardioid r=1sinθr = 1 - \sin \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
49
Find a definite integral expression that represents the area of the region inside r=1+cosθr = 1 + \cos \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
50
Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=2cos3θr = 2 \cos 3 \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
51
Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=3sin2θr = 3 \sin 2 \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
52
Find a definite integral expression that represents the area of the region inside the circle r=3sinθr = 3 \sin \theta and outside the cardioid r=1+sinθr = 1 + \sin \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
53
Find a definite integral expression that represents the area of the region between the loops of the limacon r=1+2cosθr = 1 + 2 \cos \theta Then find the exact value of the integral.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
54
Describe the conic: x2+4x+y28y24=0x ^ { 2 } + 4 x + y ^ { 2 } - 8 y - 24 = 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
55
Describe the conic: x26x+4y3=0x ^ { 2 } - 6 x + 4 y - 3 = 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
56
Describe the conic: 4x28x+2y212y3=04 x ^ { 2 } - 8 x + 2 y ^ { 2 } - 12 y - 3 = 0
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
57
Write the equation of the ellipse with foci (0,±3)( 0 , \pm 3 ) and length of minor axis 8.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
58
Write the equation of the ellipse with foci (±2,0)( \pm 2,0 ) and length of major axis 6.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
59
Write the equation of the ellipse with foci (-1, 1) and (-1, 3) and length of minor axis 4.
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
60
Find the equation of the hyperbola with foci ( ±3\pm 3 , 0) and vertices (±2,0)( \pm 2,0 )
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
61
Find the equation of the hyperbola with foci (±3,0)( \pm 3,0 ) and asymptotes y = ±2x\pm 2 x
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
62
Find the equation of a parabola with focus (-2, 0) and vertex (0, 0).
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
63
Find the equation of a parabola with focus (0, 4) and vertex (0, 0).
Unlock Deck
Unlock for access to all 63 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 63 flashcards in this deck.