Exam 9: Parametric Equations Polar Coordinates and Conic Sections

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Describe the conic: x26x+4y3=0x ^ { 2 } - 6 x + 4 y - 3 = 0

Free
(Short Answer)
4.9/5
(36)
Correct Answer:
Verified

A parabola with focus at (3, 2) and directrix y = 4

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=4cost,y=3sint,t[0,2π]x = 4 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

Free
(Multiple Choice)
4.8/5
(38)
Correct Answer:
Verified

C

Find the equation of the hyperbola with foci ( ±3\pm 3 , 0) and vertices (±2,0)( \pm 2,0 )

Free
(Essay)
4.7/5
(34)
Correct Answer:
Verified

x24y25=1\frac { x ^ { 2 } } { 4 } - \frac { y ^ { 2 } } { 5 } = 1

Find the length of the parametric curve: x=etsint,y=etcost,t[0,1]x = e ^ { t } \sin t , \quad y = e ^ { t } \cos t , \quad \mathrm { t } \in [ 0,1 ]

(Multiple Choice)
5.0/5
(25)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=1t,y=2t2,t0x = 1 - t , \quad y = - 2 t ^ { 2 } , \quad t \geq 0

(Multiple Choice)
4.7/5
(35)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=3cost,y=3sint,t[0,2π]x = 3 \cos t , \quad y = 3 \sin t , \quad t \in [ 0,2 \pi ]

(Multiple Choice)
4.8/5
(37)

Find the equation of the tangent line to the parametric curve: x=2t+1,y=3t+4, at t=1x = 2 t + 1 , \quad y = 3 t + 4 , \quad \text { at } t = - 1

(Multiple Choice)
4.8/5
(30)

Convert the equation r=2sinθr = 2 \sin \theta to rectangular coordinates.

(Multiple Choice)
4.9/5
(31)

Find a definite integral expression that represents the area of the region between the loops of the limacon r=1+2cosθr = 1 + 2 \cos \theta Then find the exact value of the integral.

(Essay)
4.7/5
(34)

Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=2cos3θr = 2 \cos 3 \theta Then find the exact value of the integral.

(Essay)
4.8/5
(25)

Convert the equation r=sin2θr = \sin 2 \theta to rectangular coordinates.

(Essay)
4.8/5
(37)

Find the equation of a parabola with focus (-2, 0) and vertex (0, 0).

(Essay)
5.0/5
(36)

Find the equation of the tangent line to the parametric curve: x=t3,y=(3t)2, at t=1x = t ^ { 3 } , \quad y = ( 3 - t ) ^ { 2 } , \quad \text { at } t = 1

(Multiple Choice)
4.9/5
(36)

Convert the equation x = -2 to polar coordinates.

(Multiple Choice)
4.8/5
(34)

Find the length of the parametric curve: x=t2,y=3t3,t[0,2]x = t ^ { 2 } , \quad y = 3 - t ^ { 3 } , \quad \mathrm { t } \in [ 0,2 ]

(Short Answer)
4.8/5
(39)

Find a definite integral expression that represents the area of the region inside one petal of the polar rose r=3sin2θr = 3 \sin 2 \theta Then find the exact value of the integral.

(Essay)
4.9/5
(37)

Convert the equation r2=cosθr ^ { 2 } = \cos \theta to rectangular coordinates.

(Essay)
4.9/5
(34)

Describe the conic: 4x28x+2y212y3=04 x ^ { 2 } - 8 x + 2 y ^ { 2 } - 12 y - 3 = 0

(Essay)
4.9/5
(31)

Convert the equation y = x to polar coordinates.

(Multiple Choice)
4.7/5
(37)

Find an equation of y as a function of x for the parametric equations given below by eliminating the parameter. Also, indicate the direction of the curve. x=2t,y=6t21,t[2,3]x = - 2 t , \quad y = 6 t ^ { 2 } - 1 , \quad t \in [ - 2,3 ]

(Multiple Choice)
4.9/5
(42)
Showing 1 - 20 of 63
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)