Deck 7: Techniques of Integration

Full screen (f)
exit full mode
Question
Integrate <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> dx.

A) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + C
B) -x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + C
C) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + C
D) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + C
E) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px> + 2 <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   <div style=padding-top: 35px>
Use Space or
up arrow
down arrow
to flip the card.
Question
Integrate <strong>Integrate   dx.</strong> A) x cos x - sin x + C B) x sin x + cos x + C C) -x cos x + sin x + C D) x sin x - cos x + C E) -x sin x + cos x + C <div style=padding-top: 35px> dx.

A) x cos x - sin x + C
B) x sin x + cos x + C
C) -x cos x + sin x + C
D) x sin x - cos x + C
E) -x sin x + cos x + C
Question
Find <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   <div style=padding-top: 35px> dx.

A) 1 - <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   <div style=padding-top: 35px>
B) -1
C) <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   <div style=padding-top: 35px> - 1
D) <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   <div style=padding-top: 35px>
E) -1 - <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   <div style=padding-top: 35px>
Question
Integrate <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> dx.

A) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> ln x + <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> + C
B) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> + C
C) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> ln x + <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> x + C
D) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> x + C
E) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <div style=padding-top: 35px> + C
Question
Integrate <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px> dx.

A) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px>
B) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px>
C) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px>
D) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px>
E) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   <div style=padding-top: 35px>
Question
Integrate <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) dx.

A) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> + C
B) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) + <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> + C
C) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) + <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> + C
D) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> + C
E) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> .

A) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + C
B) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) - <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> + C
D) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + ln(1 - <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + C
E) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + 2x <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <div style=padding-top: 35px> ) + C
Question
Integrate <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> .

A) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> - 2x - 1) + C
B) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> + 2x - 1) + C
C) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> - 2x + 1) + C
D) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> + 2x + 1) + C
E) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <div style=padding-top: 35px> - 2x + 1) + C
Question
Integrate <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> dx.

A) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + C
B) <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + C
C) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + C
D) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + C
E) <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> t dt.

A) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> - <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px>
C) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> - <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px>
D) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   <div style=padding-top: 35px>
Question
Integrate <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px>

A) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> sin 2x + C
B) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> sin 2x + C
C) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> sin 2x + C
D) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> sin 2x + C
E) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C <div style=padding-top: 35px> cos 2x + C
Question
Evaluate <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> .

A) x <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> (x) - <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> ln(1 + <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> ) + C
B) <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> + C
C) x <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> (x) - <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> ln(1 + <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> ) + C
D) arc <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> + C
E) ln <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> sin 4x dx.

A) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> (3 sin 4x - 4 cos 4x) + C
B) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> (4 sin 4x - 3 cos 4x) + C
C) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> (3 sin 4x + 4 cos 4x) + C
D) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> (4 sin 4x + 3 cos 4x) + C
E) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C <div style=padding-top: 35px> (3 sin 4x - 4 cos 4x) + C
Question
Integrate <strong>Integrate   dx.</strong> A) 6 - 2e B) 4e - 6 C) e + 3 D) 4e - 3 E) 2e - 1 <div style=padding-top: 35px> dx.

A) 6 - 2e
B) 4e - 6
C) e + 3
D) 4e - 3
E) 2e - 1
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   <div style=padding-top: 35px>
Question
Integrate <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px> dx.

A) 6 - 2e
B) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px>
C) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px> - <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px>
D) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px> + <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px>
E) 2 <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 <div style=padding-top: 35px> + 6
Question
Integrate <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px>

A) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> + C
B) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> ln x + <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> + C
C) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> + C
D) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> ln x + <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> + C
E) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) 8   + 4 B) 4 C) 8 -5 D) -4 E) 3 <div style=padding-top: 35px> dx.

A) 8 <strong>Evaluate   dx.</strong> A) 8   + 4 B) 4 C) 8 -5 D) -4 E) 3 <div style=padding-top: 35px> + 4
B) 4
C) 8 -5
D) -4
E) 3
Question
Find a reduction formula for <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> and use it to evaluate I3 = <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> dx.

A) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + 6x ln x - 6x + C
B) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + 6x ln x + 6x + C
C) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + x ln x - x + C
D) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> + x ln x - x + C
E) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C <div style=padding-top: 35px> - 6x ln x + 6x + C
Question
Find a reduction formula for In = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> and use it to evaluate I4 = . <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> dx

A) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> - <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + C
B) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + C
C) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> - n <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + C
D) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + n <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + C
E) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <div style=padding-top: 35px> + C
Question
Let In =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  dx. Find a reduction formula for In in terms of In-2 valid for n \le 3and use it to evaluate I5 =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  dx.

A)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  )
B)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  )
C)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  )
D)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  )
E)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   ) <div style=padding-top: 35px>  )
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + 3x - 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> - 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + 3x + 3ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> dx.

A) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + C
B) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + C
C) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + C
D) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + C
E) 2 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> dx.

A) 2x + ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> + C
B) 2x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> + C
C) x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> + C
D) x + ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> + C
E) x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> dx.

A) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> - 1) + <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px>
B) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> + 1) + <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px>
C) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> - 1) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px>
D) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> + 1) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px>
E) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px> ) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   <div style=padding-top: 35px>
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> + C
D) 7 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> - 3 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> + C
E) 7 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> - 3 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + 2x - 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + 2x - 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px>
C) - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px>
D) - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px> + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   <div style=padding-top: 35px>
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - x - <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> (x) + C
B) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> (x) + C
C) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> (x) + C
D) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> + x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> (x) + C
E) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - x - <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> - 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C <div style=padding-top: 35px> (x) + C
Question
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px> dx.

A) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
<strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px>

A) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> (x) + ln( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> + 1) - x + C
B) ( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> + 1) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> (x) - x + C
C) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> + C
D) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> + C
E) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> (x) - ln( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <div style=padding-top: 35px> + 1) + x + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> dx.

A) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + C
B) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + C
C) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + C
D) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + C
E) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> -3ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C <div style=padding-top: 35px> + C
Question
Evaluate the integral <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> .

A) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> (2x) + C
B) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> - <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> (2x) + C
C) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> - <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> (2x) + C
D) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> (2x) + C
E) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <div style=padding-top: 35px> (2x) + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> dx.

A) 3x - ln( <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + 4) +12 <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + C
B) - <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + C
D) 3x - ln( <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + 4) + C
E) - <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <div style=padding-top: 35px> + C
Question
The correct form of the partial fraction decomposition for the function <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> is given by

A) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px>
B) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px>
C) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px>
D) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px>
E) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px> + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   <div style=padding-top: 35px>
Question
Evaluate the integral <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> .

A) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + C
B) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + C
C) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> - <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + C
D) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + C
E) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> .

A) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + C
B) - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + C
C) - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> .

A) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + C
B) - ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + C
C) - ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> - <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + C
D) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + C
E) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C <div style=padding-top: 35px> + C
Question
Evaluate  <strong>Evaluate   dx.</strong> A) 144 B) 121 C) 9 \pi  D) 124 E) -144 <div style=padding-top: 35px>  dx.

A) 144
B) 121
C) 9 π\pi
D) 124
E) -144
Question
Evaluate <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> dx.

A) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px>
B) <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px>
C) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px>
D) <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px>
E) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px> - ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   <div style=padding-top: 35px>
Question
Evaluate <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> dx.

A) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> - a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> - a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + C
E) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> - ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C <div style=padding-top: 35px> + C
Question
Evaluate  <strong>Evaluate   dx.</strong> A) 16 \pi  B) 8 \pi  C)   D) 16 \pi  - 8 E) 12 \pi  <div style=padding-top: 35px>  dx.

A) 16 π\pi
B) 8 π\pi
C)  <strong>Evaluate   dx.</strong> A) 16 \pi  B) 8 \pi  C)   D) 16 \pi  - 8 E) 12 \pi  <div style=padding-top: 35px>
D) 16 π\pi - 8
E) 12 π\pi
Question
Evaluate <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> dt
Hint: First use the substitution u = <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> .

A) ln <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> ( <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> + 2) + C
D) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> + C
E) 2 <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> dx.

A) -2x <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> + C
B) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> + C
D) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> + C
E) - <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px>

A) <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> + C
B) - <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> + C
C) <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> + C
D) 3 <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> + C
E) 3 <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> dx.

A) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + C
B) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + C
C) <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + C
D) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + C
E) <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <div style=padding-top: 35px> + C
Question
Evaluate <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px>

A) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
B) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
C) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
D) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
E) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <div style=padding-top: 35px> + C
Question
Let J =  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>  dx. The substitution x =  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>  tan( θ\theta transforms the integral J into:

A)  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>   <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>
B) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>
C) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>
D)  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>   <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>
E) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3   <div style=padding-top: 35px>
Question
Use the half-angle substitution x = tan (θ/2) to evaluate Use the half-angle substitution x = tan (θ/2) to evaluate   dθ.<div style=padding-top: 35px> dθ.
Question
Evaluate <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> dx.

A) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
B) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
C) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
D) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
E) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px> + <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   <div style=padding-top: 35px>
Question
What technique would you use to evaluate the integral I = What technique would you use to evaluate the integral I =   Instead, try to evaluate it using Maple or another computer algebra system.<div style=padding-top: 35px> Instead, try to evaluate it using Maple or another computer algebra system.
Question
What technique would you use to evaluate the integral I = What technique would you use to evaluate the integral I =   Instead, try to evaluate it using Maple or another computer algebra system.<div style=padding-top: 35px> Instead, try to evaluate it using Maple or another computer algebra system.
Question
Let F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  Use Maple or another computer algebra program to compute F(x) and an approximate value for F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) correct to 5 decimal places.

A) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) \approx 0.89480
B) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) \approx 0.89483
C) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) \approx 0.89486
D) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) \approx 0.89489
E) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878 <div style=padding-top: 35px>  ) \approx 0.894878
Question
Let G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x).

A) G(1) \approx 0.85562,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>
B) G(1) \approx 0.85558,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>
C) G(1) \approx 0.74682,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>   <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>
D) G(1) \approx 0.74685,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>   <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>
E) G(1) \approx 0.87649,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>  G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =   <div style=padding-top: 35px>
Question
Evaluate the integral,  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty  <div style=padding-top: 35px>  dx.

A)  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty  <div style=padding-top: 35px>
B) e
C) ln 3
D)  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
Evaluate the integral  <strong>Evaluate the integral  </strong> A) \pi /2 B)  \pi  C) 1/2 D) 1 E) divergent <div style=padding-top: 35px>

A) π\pi /2
B) π\pi
C) 1/2
D) 1
E) divergent
Question
Evaluate the integral  <strong>Evaluate the integral   dx.</strong> A) 2 B) 1 C)  \pi  D) e E) diverges to  \infty  <div style=padding-top: 35px>  dx.

A) 2
B) 1
C) π\pi
D) e
E) diverges to \infty
Question
Evaluate the improper integral  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to   <div style=padding-top: 35px>  dx or show it to diverges (to \infty or \infty ).

A) converges to 1 -  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to   <div style=padding-top: 35px>
B) diverges to \infty
C) converged to  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to   <div style=padding-top: 35px>  - 1
D) diverges to - \infty
E) converges to  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to   <div style=padding-top: 35px>
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent <div style=padding-top: 35px>  .

A) π\pi
B) 2 π\pi
C)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent <div style=padding-top: 35px>
D)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent <div style=padding-top: 35px>
E) divergent
Question
Evaluate, if convergent, <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent <div style=padding-top: 35px> cos x dx.

A) <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent <div style=padding-top: 35px>
B) <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent <div style=padding-top: 35px>
C) - <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent <div style=padding-top: 35px>
D) 0
E) divergent
Question
Evaluate the integral  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>  .

A) 3  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>
B)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>   <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>
C)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>   <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>
D)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>   <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
Evaluate the integral  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty  <div style=padding-top: 35px>  .

A) 2  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty  <div style=padding-top: 35px>
B)  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty  <div style=padding-top: 35px>
C) 3  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty  <div style=padding-top: 35px>
D) 4  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
Evaluate  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty  <div style=padding-top: 35px>

A) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty  <div style=padding-top: 35px>
B) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty  <div style=padding-top: 35px>
C)  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty  <div style=padding-top: 35px>
D) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty  <div style=padding-top: 35px>
E) diverges to - \infty
Question
Evaluate the improper integral  <strong>Evaluate the improper integral     dx or show it diverges (to \infty  or - \infty ).</strong> A) diverges to  \infty  B) converges to - sin(3) C) converges to 3 - sin(3) D) diverges to - \infty  E) converges to sin(3) - 3cos(3) <div style=padding-top: 35px>   <strong>Evaluate the improper integral     dx or show it diverges (to \infty  or - \infty ).</strong> A) diverges to  \infty  B) converges to - sin(3) C) converges to 3 - sin(3) D) diverges to - \infty  E) converges to sin(3) - 3cos(3) <div style=padding-top: 35px>  dx or show it diverges (to \infty or - \infty ).

A) diverges to \infty
B) converges to - sin(3)
C) converges to 3 - sin(3)
D) diverges to - \infty
E) converges to sin(3) - 3cos(3)
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   dx.</strong> A) 2  \pi  B)  \pi  C) 1 D) 0 E) divergent <div style=padding-top: 35px>  dx.

A) 2 π\pi
B) π\pi
C) 1
D) 0
E) divergent
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 1 C) 0 D)   E) diverges to   \infty  <div style=padding-top: 35px>  .

A) π\pi
B) 1
C) 0
D)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 1 C) 0 D)   E) diverges to   \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
Which of the following is not an improper integral?

A) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
B) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
C) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
D) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
E) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx <div style=padding-top: 35px> dx
Question
  converges to - 2.<div style=padding-top: 35px> converges to - 2.
Question
Evaluate, if convergent, .  <strong>Evaluate, if convergent, .     dx</strong> A) -2 B) -1 C) 2 D) 1 E) diverges to  \infty  <div style=padding-top: 35px>   <strong>Evaluate, if convergent, .     dx</strong> A) -2 B) -1 C) 2 D) 1 E) diverges to  \infty  <div style=padding-top: 35px>  dx

A) -2
B) -1
C) 2
D) 1
E) diverges to \infty
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty  <div style=padding-top: 35px>  .

A)  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty  <div style=padding-top: 35px>
B) -  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty  <div style=padding-top: 35px>
C)  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty  <div style=padding-top: 35px>
D) diverges to \infty
E) diverges to - \infty
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A) 2 B) 2 \pi   C) 1 D)  \pi   E) diverges to  \infty  <div style=padding-top: 35px>  .

A) 2
B) 2 π\pi

C) 1
D) π\pi

E) diverges to \infty
Question
Find the area under the curve y =  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty  <div style=padding-top: 35px>  and above the x-axis between x = -1 and x = 1.

A) 4  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
B) 2  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
C) 2  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
D) 4  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
E) diverges to \infty
Question
Find the area between the curves y =  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty  <div style=padding-top: 35px>  and y =  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty  <div style=padding-top: 35px>  to the right of x = 0 if the area is finite.

A) 3 square units
B) 3  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
C) 2  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
D) 2 square units
E) diverges to \infty
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,   dx.</strong> A) 2 B) 2 \pi  C) 5 \pi  D) 5 E) diverges to  \infty  <div style=padding-top: 35px>  dx.

A) 2
B) 2 π\pi
C) 5 π\pi
D) 5
E) diverges to \infty
Question
Find, if finite, the area of the region lying between the graph of the function  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty  <div style=padding-top: 35px>  (x) and the line  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty  <div style=padding-top: 35px>  to the right of x = 0.

A)  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty  <div style=padding-top: 35px>  square units
B) π\pi square units
C) π\pi + 1 square units
D) 2 π\pi square units
E) diverges to \infty
Question
Evaluate, if convergent,  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty  <div style=padding-top: 35px>

A)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty  <div style=padding-top: 35px>
B)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty  <div style=padding-top: 35px>
C)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty  <div style=padding-top: 35px>
D)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
Evaluate, if convergent, the improper integral  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty  <div style=padding-top: 35px>

A)  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty  <div style=padding-top: 35px>
B) 1
C) e
D)  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty  <div style=padding-top: 35px>
E) diverges to \infty
Question
For what values of the constant k does the improper integral For what values of the constant k does the improper integral   converge?<div style=padding-top: 35px> converge?
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/118
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 7: Techniques of Integration
1
Integrate <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   dx.

A) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   - <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + C
B) -x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + C
C) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + C
D) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   - <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + C
E) x <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2   + 2 <strong>Integrate   dx.</strong> A) x   -   + C B) -x   +   + C C) x   +   + C D) x   -   + C E) x   + 2
x x   -   + C - x   -   + C + C
2
Integrate <strong>Integrate   dx.</strong> A) x cos x - sin x + C B) x sin x + cos x + C C) -x cos x + sin x + C D) x sin x - cos x + C E) -x sin x + cos x + C dx.

A) x cos x - sin x + C
B) x sin x + cos x + C
C) -x cos x + sin x + C
D) x sin x - cos x + C
E) -x sin x + cos x + C
x sin x + cos x + C
3
Find <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   dx.

A) 1 - <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -
B) -1
C) <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -   - 1
D) <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -
E) -1 - <strong>Find   dx.</strong> A) 1 -   B) -1 C)   - 1 D)   E) -1 -
1 - 1 -
4
Integrate <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C dx.

A) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C ln x + <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C + C
B) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C + C
C) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C ln x + <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C x + C
D) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C x + C
E) <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C ln x - <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C <strong>Integrate   dx.</strong> A)   ln x +     + C B)   ln x -     + C C)   ln x +   x + C D)   ln x -   x + C E)   ln x -     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
5
Integrate <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   dx.

A) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   + <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)
B) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   - <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)
C) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   - <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)
D) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)   + <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)
E) <strong>Integrate   dx.</strong> A)   +   B)   -   C)   -   D)   +   E)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
6
Integrate <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) dx.

A) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C + C
B) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) + <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C + C
C) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) + <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C + C
D) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C + C
E) <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C ln(5x) - <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C <strong>Integrate   ln(5x) dx.</strong> A)   ln(5x) -     + C B)   ln(5x) +     + C C)   ln(5x) +     + C D)   ln(5x) -     + C E)   ln(5x) -     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C .

A) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + C
B) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C + C
C) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) - <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C + C
D) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + ln(1 - <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + C
E) <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + 2x <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ( <strong>Evaluate   .</strong> A)     (   ) + C B)     (   ) +   + C C)     (   ) -   + C D)     (   ) + ln(1 -   ) + C E)     (   ) + 2x   (   ) + C ) + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
8
Integrate <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C .

A) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C - 2x - 1) + C
B) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C + 2x - 1) + C
C) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C - 2x + 1) + C
D) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C + 2x + 1) + C
E) <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C (2 <strong>Integrate   .</strong> A)     (2   - 2x - 1) + C B)     (2   + 2x - 1) + C C)     (2   - 2x + 1) + C D)     (2   + 2x + 1) + C E)     (2   - 2x + 1) + C - 2x + 1) + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
9
Integrate <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C dx.

A) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + C
B) <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + C
C) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + C
D) - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + C
E) <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C - <strong>Integrate   dx.</strong> A) -   -   +   + C B)   -   -   + C C) -   +   -   + C D) -   -   -   + C E)   +   -   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
10
Evaluate the integral <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   t dt.

A) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +
B) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   - <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +
C) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   - <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +
D) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +
E) <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +   + <strong>Evaluate the integral   t dt.</strong> A)   +   B)   -   C)   -   D)   +   E)   +
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
11
Integrate <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C

A) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C sin 2x + C
B) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C sin 2x + C
C) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C sin 2x + C
D) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C sin 2x + C
E) <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x - <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C x + <strong>Integrate  </strong> A)   x   x -   x +   sin 2x + C B)   x   x +   x +   sin 2x + C C)   x   x -   x -   sin 2x + C D)   x   x +   x -   sin 2x + C E)   x   x -   x +   cos 2x + C cos 2x + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
12
Evaluate <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C .

A) x <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C (x) - <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C ln(1 + <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C ) + C
B) <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C + C
C) x <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C (x) - <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C ln(1 + <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C ) + C
D) arc <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C + C
E) ln <strong>Evaluate   .</strong> A) x   (x) -   ln(1 +   ) + C B)   + C C) x   (x) -   ln(1 +   ) + C D) arc   + C E) ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
13
Evaluate the integral <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C sin 4x dx.

A) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C (3 sin 4x - 4 cos 4x) + C
B) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C (4 sin 4x - 3 cos 4x) + C
C) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C (3 sin 4x + 4 cos 4x) + C
D) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C (4 sin 4x + 3 cos 4x) + C
E) <strong>Evaluate the integral   sin 4x dx.</strong> A)   (3 sin 4x - 4 cos 4x) + C B)   (4 sin 4x - 3 cos 4x) + C C)   (3 sin 4x + 4 cos 4x) + C D)   (4 sin 4x + 3 cos 4x) + C E)   (3 sin 4x - 4 cos 4x) + C (3 sin 4x - 4 cos 4x) + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
14
Integrate <strong>Integrate   dx.</strong> A) 6 - 2e B) 4e - 6 C) e + 3 D) 4e - 3 E) 2e - 1 dx.

A) 6 - 2e
B) 4e - 6
C) e + 3
D) 4e - 3
E) 2e - 1
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
15
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   dx.

A) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   - <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)
B) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   + <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)
C) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   + <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)
D) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)   - <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)
E) <strong>Evaluate the integral   dx.</strong> A)   -   B)   +   C)   +   D)   -   E)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
16
Integrate <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 dx.

A) 6 - 2e
B) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 - <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6
C) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 - <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6
D) <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 + <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6
E) 2 <strong>Integrate   dx.</strong> A) 6 - 2e B)   -   C)   -   D)   +   E) 2   + 6 + 6
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
17
Integrate <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C

A) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C + C
B) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C ln x + <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C + C
C) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C + C
D) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C ln x + <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C + C
E) <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C ln x - <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C <strong>Integrate  </strong> A)     ln x -     + C B)     ln x +     + C C)     ln x -     + C D)     ln x +     + C E)     ln x -     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
18
Evaluate <strong>Evaluate   dx.</strong> A) 8   + 4 B) 4 C) 8 -5 D) -4 E) 3 dx.

A) 8 <strong>Evaluate   dx.</strong> A) 8   + 4 B) 4 C) 8 -5 D) -4 E) 3 + 4
B) 4
C) 8 -5
D) -4
E) 3
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
19
Find a reduction formula for <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C and use it to evaluate I3 = <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C dx.

A) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + 6x ln x - 6x + C
B) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + 6x ln x + 6x + C
C) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + x ln x - x + C
D) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C + x ln x - x + C
E) <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C = x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - n <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C , <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - 3x <strong>Find a reduction formula for   =   and use it to evaluate I<sub>3</sub> =   dx.</strong> A)   = x   - n   ,   - 3x   + 6x ln x - 6x + C B)   = x   + n   ,   + 3x   + 6x ln x + 6x + C C)   = x   -   ,   - x   + x ln x - x + C D)   = x   +   ,   - x   + x ln x - x + C E)   = x   - n   ,   - 3x   - 6x ln x + 6x + C - 6x ln x + 6x + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
20
Find a reduction formula for In = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C and use it to evaluate I4 = . <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C dx

A) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C - <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + C
B) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + C
C) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C - n <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + C
D) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + n <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + C
E) <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C , <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C = <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C <strong>Find a reduction formula for I<sub>n</sub> =   and use it to evaluate I<sub>4 </sub> = .     dx</strong> A)   =     -     ,   =     + C B)   =     +     ,   =     + C C)   =     - n   ,   =     + C D)   =     + n   ,   =     + C E)   =     +     ,   =     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
21
Let In =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  dx. Find a reduction formula for In in terms of In-2 valid for n \le 3and use it to evaluate I5 =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  dx.

A)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  )
B)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  )
C)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  )
D)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  -  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  )
E)  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )   <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ,  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  =  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  ln(1 +  <strong>Let I<sub>n</sub> =   dx. Find a reduction formula for I<sub>n</sub> in terms of I<sub>n-2</sub> valid for n  \le  3and use it to evaluate I<sub>5</sub> =   dx.</strong> A)   =     +     ,   =   +   ln(1 +   ) B)   =     -     ,   =   -   ln(1 +   ) C)   =     +     ,   =   +   ln(1 +   ) D)   =     +     ,   =   -   ln(1 +   ) E)   =     +     ,   =   +   ln(1 +   )  )
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + 3x - 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + C
B) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + C
C) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C - 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + C
D) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + 3x + 9ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + C
E) <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + 3x + 3ln <strong>Evaluate the integral   dx.</strong> A)     + 3x - 9ln   + C B)     + 3x + 9ln   + C C)     - 3x + 9ln   + C D)     + 3x + 9ln   + C E)     + 3x + 3ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C dx.

A) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + C
B) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + C
C) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + C
D) 4 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + C
E) 2 ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C - ln <strong>Evaluate the integral   dx.</strong> A) 4 ln   - ln   + C B) 4 ln   + ln   + C C) 4 ln   + ln   + C D) 4 ln   - ln   + C E) 2 ln   - ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
24
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C dx.

A) 2x + ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C + C
B) 2x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C + C
C) x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C + C
D) x + ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C + C
E) x - ln <strong>Evaluate the integral   dx.</strong> A) 2x + ln   + C B) 2x - ln   + C C) x - ln   + C D) x + ln   + C E) x - ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
25
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + C
B) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + C
C) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + C
D) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + C
E) <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C - <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   +   -   ln   +   ln   + C B)   +   +   ln   -   ln   + C C)   +   -   ln   -   ln   + C D)   +   +   ln   +   ln   + C E)   +   -   ln   +   ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
26
Evaluate <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   dx.

A) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   - 1) + <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -
B) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   + 1) + <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -
C) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   - 1) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -
D) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   + 1) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -
E) ln( <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -   ) - <strong>Evaluate   dx.</strong> A) ln(   - 1) +   B) ln(   + 1) +   C) ln(   - 1) -   D) ln(   + 1) -   E) ln(   ) -
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
27
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C + C
B) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C + C
C) <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C - <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C + C
D) 7 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C - 3 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C + C
E) 7 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C - 3 ln <strong>Evaluate the integral   dx.</strong> A)   ln   -   ln   + C B)   ln   -   ln   + C C)   ln   -   ln   + C D) 7 ln   - 3 ln   + C E) 7 ln   - 3 ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
28
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C - <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + 2x - 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + C
B) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C - <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + C
C) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + 2x - 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + C
D) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + C
E) <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + 2x + 2 ln <strong>Evaluate the integral   dx.</strong> A)   -   + 2x - 2 ln   + C B)   -   + 2x + 2 ln   + C C)   +   + 2x - 2 ln   + C D)   +   + 2x + 2 ln   + C E)   +   + 2x + 2 ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   dx.

A) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +
B) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +
C) - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +
D) - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   - <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +
E) <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +   + <strong>Evaluate the integral   dx.</strong> A)   +   B)   -   C) -   +   D) -   -   E)   +
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
30
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C dx.

A) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - x - <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C (x) + C
B) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C (x) + C
C) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C (x) + C
D) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C + x + <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C + 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C (x) + C
E) <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - x - <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C - 3 <strong>Evaluate the integral   dx.</strong> A)   - x -   + 3   (x) + C B)   - x +   + 3   (x) + C C)   - x +   - 3   (x) + C D)   + x +   + 3   (x) + C E)   - x -   - 3   (x) + C (x) + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
31
Evaluate the integral <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)   dx.

A) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)
B) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)
C) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)
D) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)
E) <strong>Evaluate the integral   dx.</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
32
<strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C

A) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C (x) + ln( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C + 1) - x + C
B) ( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C + 1) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C (x) - x + C
C) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C + C
D) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C + C
E) <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C (x) - ln( <strong> </strong> A)     (x) + ln(   + 1) - x + C B) (   + 1)   (x) - x + C C)   + C D)     + C E)     (x) - ln(   + 1) + x + C + 1) + x + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
33
Evaluate <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C dx.

A) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + C
B) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + C
C) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + C
D) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + C
E) ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C -3ln <strong>Evaluate   dx.</strong> A) ln   + ln   +   + C B) ln   + ln   +   + C C) ln   +   + C D) ln   + ln   +   + C E) ln   + ln   -3ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
34
Evaluate the integral <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C .

A) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C (2x) + C
B) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C - <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C (2x) + C
C) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C - <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C (2x) + C
D) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C (2x) + C
E) <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C + <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C <strong>Evaluate the integral   .</strong> A)   +     (2x) + C B)   -     (2x) + C C)   -     (2x) + C D)   +     (2x) + C E)   +     (2x) + C (2x) + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
35
Evaluate <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C dx.

A) 3x - ln( <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + 4) +12 <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + C
B) - <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + C
C) <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + C
D) 3x - ln( <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + 4) + C
E) - <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C <strong>Evaluate   dx.</strong> A) 3x - ln(   + 4) +12     + C B) -   +       + C C)   + C D) 3x - ln(   + 4) + C E) -   +       + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
36
The correct form of the partial fraction decomposition for the function <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   is given by

A) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +
B) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +
C) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +
D) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +
E) <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +   + <strong>The correct form of the partial fraction decomposition for the function   is given by</strong> A)   +   B)   +   +   C)   +   D)   +   E)   +   +
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
37
Evaluate the integral <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C .

A) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + C
B) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C - <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + C
C) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C - <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + C
D) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + C
E) ln <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + <strong>Evaluate the integral   .</strong> A) ln   +   + C B) ln   -   + C C) ln   -   + C D) ln   +   + C E) ln   +   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C .

A) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + C
B) - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + C
C) - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + C
D) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + C
E) <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C ln <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C - <strong>Evaluate   .</strong> A)   ln   -   -   + C B) -   ln   -   +   + C C) -   ln   -   -   + C D)   ln   -   +   + C E)   ln   -   -   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
39
Evaluate <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C .

A) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C - <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + C
B) - ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + C
C) - ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C - <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + C
D) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + C
E) ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C ln <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + <strong>Evaluate   .</strong> A) ln   -   ln   +   + C B) - ln   +   ln   +   + C C) - ln   -   ln   +   + C D) ln   +   ln   +   + C E) ln   +   ln   +   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
40
Evaluate  <strong>Evaluate   dx.</strong> A) 144 B) 121 C) 9 \pi  D) 124 E) -144  dx.

A) 144
B) 121
C) 9 π\pi
D) 124
E) -144
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
41
Evaluate <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   dx.

A) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln
B) <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln
C) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln
D) <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   + ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln
E) - <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln   - ln <strong>Evaluate   dx.</strong> A) -   + ln   B)   + ln   C) -   + ln   D)   + ln   E) -   - ln
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C dx.

A) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
B) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
C) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
D) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
E) <strong>Evaluate   dx.</strong> A)   + C B)   + C C)   + C D)   + C E)   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
43
Evaluate <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C dx.

A) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + C
B) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C - a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + C
C) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C - a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + C
D) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + a ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + C
E) <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C - ln <strong>Evaluate   dx.</strong> A)   + a ln   + C B)   - a ln   + C C)   - a ln   + C D)   + a ln   + C E)   - ln   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
44
Evaluate  <strong>Evaluate   dx.</strong> A) 16 \pi  B) 8 \pi  C)   D) 16 \pi  - 8 E) 12 \pi   dx.

A) 16 π\pi
B) 8 π\pi
C)  <strong>Evaluate   dx.</strong> A) 16 \pi  B) 8 \pi  C)   D) 16 \pi  - 8 E) 12 \pi
D) 16 π\pi - 8
E) 12 π\pi
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C dt
Hint: First use the substitution u = <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C .

A) ln <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C + C
B) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C + C
C) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C ( <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C + 2) + C
D) <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C + C
E) 2 <strong>Evaluate   dt Hint: First use the substitution u =   .</strong> A) ln   + C B)   + C C)   (   + 2) + C D)     + C E) 2   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
46
Evaluate <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C dx.

A) -2x <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C + C
B) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C + C
C) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C + C
D) <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C + C
E) - <strong>Evaluate   dx.</strong> A) -2x   + C B)   + C C)   + C D)   + C E) -   + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C

A) <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C + C
B) - <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C + C
C) <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C + C
D) 3 <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C + C
E) 3 <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C <strong>Evaluate  </strong> A)       + C B) -     + C C)       + C D) 3     + C E) 3     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C dx.

A) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + C
B) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + C
C) <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + C
D) - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C - <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + C
E) <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C <strong>Evaluate   dx.</strong> A) -     +       + C B) -     +       + C C)     -       + C D) -     -       + C E)     +       + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C

A) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
B) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
C) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
D) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
E) <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C <strong>Evaluate  </strong> A)     + C B)     + C C)     + C D)     + C E)     + C + C
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
50
Let J =  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3    dx. The substitution x =  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3    tan( θ\theta transforms the integral J into:

A)  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3     <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3
B) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3
C) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3
D)  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3     <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3
E) 3  <strong>Let J =   dx. The substitution x =   tan( \theta  transforms the integral J into:</strong> A)     B) 3   C) 3   D)     E) 3
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
51
Use the half-angle substitution x = tan (θ/2) to evaluate Use the half-angle substitution x = tan (θ/2) to evaluate   dθ. dθ.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   dx.

A) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
B) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
C) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
D) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   - <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
E) <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +   + <strong>Evaluate   dx.</strong> A)   -   B)   -   C)   -   D)   -   E)   +
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
53
What technique would you use to evaluate the integral I = What technique would you use to evaluate the integral I =   Instead, try to evaluate it using Maple or another computer algebra system. Instead, try to evaluate it using Maple or another computer algebra system.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
54
What technique would you use to evaluate the integral I = What technique would you use to evaluate the integral I =   Instead, try to evaluate it using Maple or another computer algebra system. Instead, try to evaluate it using Maple or another computer algebra system.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
55
Let F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  Use Maple or another computer algebra program to compute F(x) and an approximate value for F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) correct to 5 decimal places.

A) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) \approx 0.89480
B) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) \approx 0.89483
C) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) \approx 0.89486
D) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) \approx 0.89489
E) F(x) =  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878   <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  FresnelS  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ; F(  <strong>Let F(x) =   Use Maple or another computer algebra program to compute F(x) and an approximate value for F(   ) correct to 5 decimal places.</strong> A) F(x) =       FresnelS   ; F(   )  \approx  0.89480 B) F(x) =       FresnelS   ; F(   )  \approx  0.89483 C) F(x) =       FresnelS   ; F(   )  \approx  0.89486 D) F(x) =       FresnelS   ; F(   )  \approx  0.89489 E) F(x) =       FresnelS   ; F(   )  \approx  0.894878  ) \approx 0.894878
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
56
Let G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x).

A) G(1) \approx 0.85562,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =
B) G(1) \approx 0.85558,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =
C) G(1) \approx 0.74682,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =     <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =
D) G(1) \approx 0.74685,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =     <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =
E) G(1) \approx 0.87649,  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =    G(x) =  <strong>Let G(x) =   dt. Use Maple or another computer algebra system to calculate G(1) correct to 5 decimal places, and also to calculate   G(x).</strong> A) G(1)  \approx  0.85562,   G(x) =   B) G(1)  \approx  0.85558,   G(x) =   C) G(1)  \approx  0.74682,   G(x) =     D) G(1)  \approx  0.74685,   G(x) =     E) G(1)  \approx  0.87649,   G(x) =
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
57
Evaluate the integral,  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty   dx.

A)  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty
B) e
C) ln 3
D)  <strong>Evaluate the integral,   dx.</strong> A)   B) e C) ln 3 D)   E) diverges to  \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the integral  <strong>Evaluate the integral  </strong> A) \pi /2 B)  \pi  C) 1/2 D) 1 E) divergent

A) π\pi /2
B) π\pi
C) 1/2
D) 1
E) divergent
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the integral  <strong>Evaluate the integral   dx.</strong> A) 2 B) 1 C)  \pi  D) e E) diverges to  \infty   dx.

A) 2
B) 1
C) π\pi
D) e
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate the improper integral  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to    dx or show it to diverges (to \infty or \infty ).

A) converges to 1 -  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to
B) diverges to \infty
C) converged to  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to    - 1
D) diverges to - \infty
E) converges to  <strong>Evaluate the improper integral   dx or show it to diverges (to  \infty  or  \infty ).</strong> A) converges to 1 -   B) diverges to  \infty  C) converged to   - 1 D) diverges to - \infty  E) converges to
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent  .

A) π\pi
B) 2 π\pi
C)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent
D)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 2  \pi  C)   D)   E) divergent
E) divergent
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate, if convergent, <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent cos x dx.

A) <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent
B) <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent
C) - <strong>Evaluate, if convergent,   cos x dx.</strong> A)   B)   C) -   D) 0 E) divergent
D) 0
E) divergent
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate the integral  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty   .

A) 3  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty
B)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty    <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty
C)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty    <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty
D)  <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty    <strong>Evaluate the integral   .</strong> A) 3   B)     C)     D)     E) diverges to  \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate the integral  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty   .

A) 2  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty
B)  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty
C) 3  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty
D) 4  <strong>Evaluate the integral   .</strong> A) 2   B)   C) 3   D) 4   E) diverges to  \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty

A) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty
B) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty
C)  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty
D) -  <strong>Evaluate  </strong> A) -   B) -   C)   D) -   E) diverges to - \infty
E) diverges to - \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate the improper integral  <strong>Evaluate the improper integral     dx or show it diverges (to \infty  or - \infty ).</strong> A) diverges to  \infty  B) converges to - sin(3) C) converges to 3 - sin(3) D) diverges to - \infty  E) converges to sin(3) - 3cos(3)   <strong>Evaluate the improper integral     dx or show it diverges (to \infty  or - \infty ).</strong> A) diverges to  \infty  B) converges to - sin(3) C) converges to 3 - sin(3) D) diverges to - \infty  E) converges to sin(3) - 3cos(3)  dx or show it diverges (to \infty or - \infty ).

A) diverges to \infty
B) converges to - sin(3)
C) converges to 3 - sin(3)
D) diverges to - \infty
E) converges to sin(3) - 3cos(3)
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate, if convergent,  <strong>Evaluate, if convergent,   dx.</strong> A) 2  \pi  B)  \pi  C) 1 D) 0 E) divergent  dx.

A) 2 π\pi
B) π\pi
C) 1
D) 0
E) divergent
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 1 C) 0 D)   E) diverges to   \infty   .

A) π\pi
B) 1
C) 0
D)  <strong>Evaluate, if convergent,   .</strong> A)   \pi  B) 1 C) 0 D)   E) diverges to   \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
69
Which of the following is not an improper integral?

A) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
B) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
C) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
D) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
E) <strong>Which of the following is not an improper integral?</strong> A)   dx B)   dx C)   dx D)   dx E)   dx dx
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
70
  converges to - 2. converges to - 2.
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
71
Evaluate, if convergent, .  <strong>Evaluate, if convergent, .     dx</strong> A) -2 B) -1 C) 2 D) 1 E) diverges to  \infty    <strong>Evaluate, if convergent, .     dx</strong> A) -2 B) -1 C) 2 D) 1 E) diverges to  \infty   dx

A) -2
B) -1
C) 2
D) 1
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
72
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty   .

A)  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty
B) -  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty
C)  <strong>Evaluate, if convergent,   .</strong> A)   B) -   C)   D) diverges to  \infty  E) diverges to - \infty
D) diverges to \infty
E) diverges to - \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate, if convergent,  <strong>Evaluate, if convergent,   .</strong> A) 2 B) 2 \pi   C) 1 D)  \pi   E) diverges to  \infty   .

A) 2
B) 2 π\pi

C) 1
D) π\pi

E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
74
Find the area under the curve y =  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty   and above the x-axis between x = -1 and x = 1.

A) 4  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty   square units
B) 2  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty   square units
C) 2  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty   square units
D) 4  <strong>Find the area under the curve y =   and above the x-axis between x = -1 and x = 1.</strong> A) 4   square units B) 2   square units C) 2   square units D) 4   square units E) diverges to  \infty   square units
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
75
Find the area between the curves y =  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty   and y =  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty   to the right of x = 0 if the area is finite.

A) 3 square units
B) 3  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty   square units
C) 2  <strong>Find the area between the curves y =   and y =   to the right of x = 0 if the area is finite.</strong> A) 3 square units B) 3   square units C) 2   square units D) 2 square units E) diverges to  \infty   square units
D) 2 square units
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate, if convergent,  <strong>Evaluate, if convergent,   dx.</strong> A) 2 B) 2 \pi  C) 5 \pi  D) 5 E) diverges to  \infty   dx.

A) 2
B) 2 π\pi
C) 5 π\pi
D) 5
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
77
Find, if finite, the area of the region lying between the graph of the function  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty   (x) and the line  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty   to the right of x = 0.

A)  <strong>Find, if finite, the area of the region lying between the graph of the function   (x) and the line   to the right of x = 0.</strong> A)   square units B)   \pi  square units C)   \pi  + 1 square units D) 2  \pi  square units E) diverges to  \infty   square units
B) π\pi square units
C) π\pi + 1 square units
D) 2 π\pi square units
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
78
Evaluate, if convergent,  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty

A)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty
B)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty
C)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty
D)  <strong>Evaluate, if convergent,  </strong> A)   B)   C)   D)   E) diverges to  \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate, if convergent, the improper integral  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty

A)  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty
B) 1
C) e
D)  <strong>Evaluate, if convergent, the improper integral  </strong> A)   B) 1 C) e D)   E) diverges to \infty
E) diverges to \infty
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
80
For what values of the constant k does the improper integral For what values of the constant k does the improper integral   converge? converge?
Unlock Deck
Unlock for access to all 118 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 118 flashcards in this deck.