Deck 8: Three-Space: Partial Derivatives and Double Integrals

Full screen (f)
exit full mode
Question
The three- space equation (x2)2+(y2+5)2+(z1)2=16(x-2)^{2}+\left(y^{2}+5\right)^{2}+(z-1)^{2}=16 represents aa :

A) parabolic cylinder
B) sphere
C) hyperboloid of one sheet
D) elliptic cone
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the partial derivative zx\frac{\partial z}{\partial x} if z=x3y5+sinxyz=x^{3} y^{5}+\sin x y .

A) 5x3y4+xcosxy5 x^{3} y^{4}+x \cos x y
B) 3x2y5+ycosxy3 x^{2} y^{5}+y \cos x y
C) 3x2y5+cosxy3 x^{2} y^{5}+\cos x y
D) 3x2y5+xcosxy3 x^{2} y^{5}+x \cos x y
Question
Find PR\frac{\partial P}{\partial R} if P=V2RP=\frac{V^{2}}{R} .

A) V2R2-\frac{V^{2}}{R^{2}}
B) 2VR2-\frac{2 V}{R^{2}}
C) 2 VR2\frac{2 \mathrm{~V}}{\mathrm{R}^{2}}
D) V2R2\frac{V^{2}}{R^{2}}
Question
Find the total differential of the function z=x2y+sinyz=x^{2} y+\sin y .

A) dz=(2xycosy)dx+(x2+cosy)dyd z=(2 x y \cos y) d x+\left(x^{2}+\cos y\right) d y
B) dz=2xydx+(x2+cosy)dyd z=2 x y d x+\left(x^{2}+\cos y\right) d y
C) dz=2xydx+(2x+cosy)dyd z=2 x y d x+(2 x+\cos y) d y
D) dz=(2xy+cosy)dx+x2dyd z=(2 x y+\cos y) d x+x^{2} d y
Question
Use the total differential to estimate the change in the volume of a cylinder, V=πr2hV=\pi r^{2} h , if its radius changed from 5.00 cm5.00 \mathrm{~cm} to 5.03 cm5.03 \mathrm{~cm} and its height changed from 4.00 cm4.00 \mathrm{~cm} to 3.98 cm3.98 \mathrm{~cm} .

A) dV=1.96 cm2\mathrm{dV}=1.96 \mathrm{~cm}^{2}
B) dV=2.20 cm2\mathrm{dV}=2.20 \mathrm{~cm}^{2}
C) dV=2.07 cm2\mathrm{dV}=2.07 \mathrm{~cm}^{2}
D) dV=5.34 cm2\mathrm{dV}=5.34 \mathrm{~cm}^{2}
Question
Find any relative maximum or minimum points or saddle points of the function z=f(x,y)=x2+y2+2x6y+3z=f(x, y)=x^{2}+y^{2}+2 x-6 y+3 .

A) saddle point at (1,3,3)(1,3,-3)
B) relative minimum at (- 1,3,7)1,3,-7)
C) saddle point at ( 1,3,29-1,-3,29 )
D) relative maximum at (1,3,33)(1,-3,33)
Question
Evaluate the double integral 01x23x+14xdydx\int_{0}^{1} \int_{x^{2}}^{3 x+1} 4 x d y d x

A) 6
B) 3
C) 4
D) 5
Question
Find the volume of the solid bounded by the surface 3x+4y+2z=123 x+4 y+2 z=12 and the coordinate planes.

A) 12
B) 24
C) 14
D) 16
Question
Name and sketch the graph of 9x2+y2+4z2=369 x^{2}+y^{2}+4 z^{2}=36 .
Question
Find the distance between the points (4,5,8)(4,-5,8) and (3, 7 - 2).
Question
Find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} for z=e4xcosxyz=e^{4 x} \cos x y .
Question
Given the surface z=36x2+25y2z=36 x^{2}+25 y^{2} , find the slope of the tangent line parallel to the xzx z - plane and through the point (1,1,61)(-1,1,61) .
Question
Find the total differential for z=4x2+2xy+3y3z=4 x^{2}+2 x y+3 y^{3} .
Question
The total resistance RR of two resistors R1R_{1} and R2R_{2} , connected in parallel, is R1R2R1+R2\frac{R_{1} R_{2}}{R_{1}+R_{2}} . R1R_{1} measures 525Ω525 \Omega with a maximum error of 35Ω35 \Omega . R2\mathrm{R}_{2} measures 375Ω375 \Omega with a maximum error of 24Ω24 \Omega . Use a differential to approximate the change in R\mathrm{R} to two significant digits.
Question
Find all critical points and any relative maximum or minimum points or saddle points for the function: z=2x2+5y28xy+6xz=2 x^{2}+5 y^{2}-8 x y+6 x
Question
Evaluate 130x2(x25xy)dydx\int_{1}^{3} \int_{0}^{x^{2}}\left(x^{2}-5 x y\right) d y d x .
Question
Find the volume of the solid bounded by the plane 5x+2y+z=105 x+2 y+z=10 and the coordinate planes.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/17
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 8: Three-Space: Partial Derivatives and Double Integrals
1
The three- space equation (x2)2+(y2+5)2+(z1)2=16(x-2)^{2}+\left(y^{2}+5\right)^{2}+(z-1)^{2}=16 represents aa :

A) parabolic cylinder
B) sphere
C) hyperboloid of one sheet
D) elliptic cone
sphere
2
Find the partial derivative zx\frac{\partial z}{\partial x} if z=x3y5+sinxyz=x^{3} y^{5}+\sin x y .

A) 5x3y4+xcosxy5 x^{3} y^{4}+x \cos x y
B) 3x2y5+ycosxy3 x^{2} y^{5}+y \cos x y
C) 3x2y5+cosxy3 x^{2} y^{5}+\cos x y
D) 3x2y5+xcosxy3 x^{2} y^{5}+x \cos x y
3x2y5+ycosxy3 x^{2} y^{5}+y \cos x y
3
Find PR\frac{\partial P}{\partial R} if P=V2RP=\frac{V^{2}}{R} .

A) V2R2-\frac{V^{2}}{R^{2}}
B) 2VR2-\frac{2 V}{R^{2}}
C) 2 VR2\frac{2 \mathrm{~V}}{\mathrm{R}^{2}}
D) V2R2\frac{V^{2}}{R^{2}}
V2R2-\frac{V^{2}}{R^{2}}
4
Find the total differential of the function z=x2y+sinyz=x^{2} y+\sin y .

A) dz=(2xycosy)dx+(x2+cosy)dyd z=(2 x y \cos y) d x+\left(x^{2}+\cos y\right) d y
B) dz=2xydx+(x2+cosy)dyd z=2 x y d x+\left(x^{2}+\cos y\right) d y
C) dz=2xydx+(2x+cosy)dyd z=2 x y d x+(2 x+\cos y) d y
D) dz=(2xy+cosy)dx+x2dyd z=(2 x y+\cos y) d x+x^{2} d y
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
5
Use the total differential to estimate the change in the volume of a cylinder, V=πr2hV=\pi r^{2} h , if its radius changed from 5.00 cm5.00 \mathrm{~cm} to 5.03 cm5.03 \mathrm{~cm} and its height changed from 4.00 cm4.00 \mathrm{~cm} to 3.98 cm3.98 \mathrm{~cm} .

A) dV=1.96 cm2\mathrm{dV}=1.96 \mathrm{~cm}^{2}
B) dV=2.20 cm2\mathrm{dV}=2.20 \mathrm{~cm}^{2}
C) dV=2.07 cm2\mathrm{dV}=2.07 \mathrm{~cm}^{2}
D) dV=5.34 cm2\mathrm{dV}=5.34 \mathrm{~cm}^{2}
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
6
Find any relative maximum or minimum points or saddle points of the function z=f(x,y)=x2+y2+2x6y+3z=f(x, y)=x^{2}+y^{2}+2 x-6 y+3 .

A) saddle point at (1,3,3)(1,3,-3)
B) relative minimum at (- 1,3,7)1,3,-7)
C) saddle point at ( 1,3,29-1,-3,29 )
D) relative maximum at (1,3,33)(1,-3,33)
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
7
Evaluate the double integral 01x23x+14xdydx\int_{0}^{1} \int_{x^{2}}^{3 x+1} 4 x d y d x

A) 6
B) 3
C) 4
D) 5
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
8
Find the volume of the solid bounded by the surface 3x+4y+2z=123 x+4 y+2 z=12 and the coordinate planes.

A) 12
B) 24
C) 14
D) 16
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
9
Name and sketch the graph of 9x2+y2+4z2=369 x^{2}+y^{2}+4 z^{2}=36 .
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
10
Find the distance between the points (4,5,8)(4,-5,8) and (3, 7 - 2).
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
11
Find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} for z=e4xcosxyz=e^{4 x} \cos x y .
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
12
Given the surface z=36x2+25y2z=36 x^{2}+25 y^{2} , find the slope of the tangent line parallel to the xzx z - plane and through the point (1,1,61)(-1,1,61) .
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
13
Find the total differential for z=4x2+2xy+3y3z=4 x^{2}+2 x y+3 y^{3} .
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
14
The total resistance RR of two resistors R1R_{1} and R2R_{2} , connected in parallel, is R1R2R1+R2\frac{R_{1} R_{2}}{R_{1}+R_{2}} . R1R_{1} measures 525Ω525 \Omega with a maximum error of 35Ω35 \Omega . R2\mathrm{R}_{2} measures 375Ω375 \Omega with a maximum error of 24Ω24 \Omega . Use a differential to approximate the change in R\mathrm{R} to two significant digits.
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
15
Find all critical points and any relative maximum or minimum points or saddle points for the function: z=2x2+5y28xy+6xz=2 x^{2}+5 y^{2}-8 x y+6 x
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
16
Evaluate 130x2(x25xy)dydx\int_{1}^{3} \int_{0}^{x^{2}}\left(x^{2}-5 x y\right) d y d x .
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
17
Find the volume of the solid bounded by the plane 5x+2y+z=105 x+2 y+z=10 and the coordinate planes.
Unlock Deck
Unlock for access to all 17 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 17 flashcards in this deck.