Exam 8: Three-Space: Partial Derivatives and Double Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Find the distance between the points (4,5,8)(4,-5,8) and (3, 7 - 2).

Free
(Essay)
4.9/5
(37)
Correct Answer:
Verified

757 \sqrt{5}

Find the volume of the solid bounded by the plane 5x+2y+z=105 x+2 y+z=10 and the coordinate planes.

Free
(Essay)
4.8/5
(29)
Correct Answer:
Verified

V=1623\mathrm{V}=16 \frac{2}{3}

Name and sketch the graph of 9x2+y2+4z2=369 x^{2}+y^{2}+4 z^{2}=36 .

Free
(Essay)
4.9/5
(36)
Correct Answer:
Verified

9x2+y2+4z2=369 x^{2}+y^{2}+4 z^{2}=36
Ellipsoid
9 x^{2}+y^{2}+4 z^{2}=36  Ellipsoid

The total resistance RR of two resistors R1R_{1} and R2R_{2} , connected in parallel, is R1R2R1+R2\frac{R_{1} R_{2}}{R_{1}+R_{2}} . R1R_{1} measures 525Ω525 \Omega with a maximum error of 35Ω35 \Omega . R2\mathrm{R}_{2} measures 375Ω375 \Omega with a maximum error of 24Ω24 \Omega . Use a differential to approximate the change in R\mathrm{R} to two significant digits.

(Essay)
4.9/5
(28)

Use the total differential to estimate the change in the volume of a cylinder, V=πr2hV=\pi r^{2} h , if its radius changed from 5.00 cm5.00 \mathrm{~cm} to 5.03 cm5.03 \mathrm{~cm} and its height changed from 4.00 cm4.00 \mathrm{~cm} to 3.98 cm3.98 \mathrm{~cm} .

(Multiple Choice)
4.9/5
(36)

Find the partial derivative zx\frac{\partial z}{\partial x} if z=x3y5+sinxyz=x^{3} y^{5}+\sin x y .

(Multiple Choice)
4.8/5
(25)

Find zx\frac{\partial z}{\partial x} and zy\frac{\partial z}{\partial y} for z=e4xcosxyz=e^{4 x} \cos x y .

(Essay)
4.8/5
(31)

The three- space equation (x2)2+(y2+5)2+(z1)2=16(x-2)^{2}+\left(y^{2}+5\right)^{2}+(z-1)^{2}=16 represents aa :

(Multiple Choice)
4.7/5
(27)

Find the total differential of the function z=x2y+sinyz=x^{2} y+\sin y .

(Multiple Choice)
4.9/5
(29)

Find all critical points and any relative maximum or minimum points or saddle points for the function: z=2x2+5y28xy+6xz=2 x^{2}+5 y^{2}-8 x y+6 x

(Essay)
4.8/5
(32)

Find any relative maximum or minimum points or saddle points of the function z=f(x,y)=x2+y2+2x6y+3z=f(x, y)=x^{2}+y^{2}+2 x-6 y+3 .

(Multiple Choice)
4.9/5
(36)

Find the volume of the solid bounded by the surface 3x+4y+2z=123 x+4 y+2 z=12 and the coordinate planes.

(Multiple Choice)
4.9/5
(32)

Find the total differential for z=4x2+2xy+3y3z=4 x^{2}+2 x y+3 y^{3} .

(Essay)
4.8/5
(30)

Evaluate 130x2(x25xy)dydx\int_{1}^{3} \int_{0}^{x^{2}}\left(x^{2}-5 x y\right) d y d x .

(Essay)
4.9/5
(37)

Evaluate the double integral 01x23x+14xdydx\int_{0}^{1} \int_{x^{2}}^{3 x+1} 4 x d y d x

(Multiple Choice)
4.8/5
(30)

Find PR\frac{\partial P}{\partial R} if P=V2RP=\frac{V^{2}}{R} .

(Multiple Choice)
4.8/5
(33)

Given the surface z=36x2+25y2z=36 x^{2}+25 y^{2} , find the slope of the tangent line parallel to the xzx z - plane and through the point (1,1,61)(-1,1,61) .

(Essay)
4.9/5
(27)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)