Deck 12: Applications of the Derivative

Full screen (f)
exit full mode
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) (-2,0),(-1,2),(2,1)  B)  (-3,-1),(-2,0),(2,1)  C) (-3,-1),(-1,2),(2,1)  D)  (-3,-1),(-1,2),(-2,0)  <div style=padding-top: 35px>

A) (2,0),(1,2),(2,1)(-2,0),(-1,2),(2,1)
B) (3,1),(2,0),(2,1)(-3,-1),(-2,0),(2,1)
C) (3,1),(1,2),(2,1)(-3,-1),(-1,2),(2,1)
D) (3,1),(1,2),(2,0)(-3,-1),(-1,2),(-2,0)
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (3,-2)  B)  (3,-2),(6,0)  C)  (0,0),(3,-2),(6,0)  D)  (0,0),(6,0)  <div style=padding-top: 35px>

A) (3,2)(3,-2)
B) (3,2),(6,0)(3,-2),(6,0)
C) (0,0),(3,2),(6,0)(0,0),(3,-2),(6,0)
D) (0,0),(6,0)(0,0),(6,0)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (2,0)  B) None C)  (-2,3)  D)  (-2,3),(2,0)  <div style=padding-top: 35px>

A) (2,0)(2,0)
B) None
C) (2,3)(-2,3)
D) (2,3),(2,0)(-2,3),(2,0)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (1,0)  B)  (1,2)  C) None D)  (0,1)  <div style=padding-top: 35px>

A) (1,0)(1,0)
B) (1,2)(1,2)
C) None
D) (0,1)(0,1)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (2,1),(-2,-1)  B)  (2,1)  C) None D)  (-2,-1)  <div style=padding-top: 35px>

A) (2,1),(2,1)(2,1),(-2,-1)
B) (2,1)(2,1)
C) None
D) (2,1)(-2,-1)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) None B)  (-2,5),(0,0),(2,5)  C)  (-2,5),(2,5)  D)  (0,0)  <div style=padding-top: 35px>

A) None
B) (2,5),(0,0),(2,5)(-2,5),(0,0),(2,5)
C) (2,5),(2,5)(-2,5),(2,5)
D) (0,0)(0,0)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) None B)  (0,2)  C)  (-2,0)  D)  (0,2),(-2,0)  <div style=padding-top: 35px>

A) None
B) (0,2)(0,2)
C) (2,0)(-2,0)
D) (0,2),(2,0)(0,2),(-2,0)
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-3.5,0),(-2,2),(1.5,0),(3.1,2)  B)  (-3.5,0),(1.5,0)  C)  (-2,2),(1.5,0)  D) None <div style=padding-top: 35px>

A) (3.5,0),(2,2),(1.5,0),(3.1,2)(-3.5,0),(-2,2),(1.5,0),(3.1,2)
B) (3.5,0),(1.5,0)(-3.5,0),(1.5,0)
C) (2,2),(1.5,0)(-2,2),(1.5,0)
D) None
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-3,0),(3.75,0)  B)  (1.5,-1)  C)  (-6,3),(1.5,-1),(4.2,2)  D) None <div style=padding-top: 35px>

A) (3,0),(3.75,0)(-3,0),(3.75,0)
B) (1.5,1)(1.5,-1)
C) (6,3),(1.5,1),(4.2,2)(-6,3),(1.5,-1),(4.2,2)
D) None
Question
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-5.5,-3),(-3.5,-1.5),(3.5,1.5),(5.5,3)  B)  (-3.5,-1.5),(3.5,1.5)  C)  (-5.5,-3),(5.5,3)  D) None <div style=padding-top: 35px>

A) (5.5,3),(3.5,1.5),(3.5,1.5),(5.5,3)(-5.5,-3),(-3.5,-1.5),(3.5,1.5),(5.5,3)
B) (3.5,1.5),(3.5,1.5)(-3.5,-1.5),(3.5,1.5)
C) (5.5,3),(5.5,3)(-5.5,-3),(5.5,3)
D) None
Question
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-3, \infty)  B)  (-3,3)  C)  (-2, \infty)  D)  (-2,2)  <div style=padding-top: 35px>

A) (3,)(-3, \infty)
B) (3,3)(-3,3)
C) (2,)(-2, \infty)
D) (2,2)(-2,2)
Question
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-\infty, 0)  B)  (0,3)  C)  (-1,0)  D)  (3, \infty)  <div style=padding-top: 35px>

A) (,0)(-\infty, 0)
B) (0,3)(0,3)
C) (1,0)(-1,0)
D) (3,)(3, \infty)
Question
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (3, \infty)  B)  (-2, \infty)  C)  (-2,0)  D)  (3,6)  <div style=padding-top: 35px>

A) (3,)(3, \infty)
B) (2,)(-2, \infty)
C) (2,0)(-2,0)
D) (3,6)(3,6)
Question
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-1,2)  B)  (-2,-1) \cup(2, \infty)  C)  (-2,-1)  D)  (-1, \infty)  <div style=padding-top: 35px>

A) (1,2)(-1,2)
B) (2,1)(2,)(-2,-1) \cup(2, \infty)
C) (2,1)(-2,-1)
D) (1,)(-1, \infty)
Question
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  B)  (0,5)  C)  (1,6)  D)  (0,6)  <div style=padding-top: 35px>

A) <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  B)  (0,5)  C)  (1,6)  D)  (0,6)  <div style=padding-top: 35px>
B) (0,5)(0,5)
C) (1,6)(1,6)
D) (0,6)(0,6)
Question
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-1,0)  B)  (0,3)  C)  (-\infty,-1)  D)  (-\infty, 0)  <div style=padding-top: 35px>

A) (1,0)(-1,0)
B) (0,3)(0,3)
C) (,1)(-\infty,-1)
D) (,0)(-\infty, 0)
Question
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-\infty,-2)  B)  (-3,-2)  C)  (-\infty,-3)  D)  (0,-2)  <div style=padding-top: 35px>

A) (,2)(-\infty,-2)
B) (3,2)(-3,-2)
C) (,3)(-\infty,-3)
D) (0,2)(0,-2)
Question
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (5,1)  B)  (5,12)  C)  (6,1)  D)  (6,12)  <div style=padding-top: 35px>

A) (5,1)(5,1)
B) (5,12)(5,12)
C) (6,1)(6,1)
D) (6,12)(6,12)
Question
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (0,3)  B)  (-\infty,-2)  C)  (0,-2)  D)  (-\infty, 3)  <div style=padding-top: 35px>

A) (0,3)(0,3)
B) (,2)(-\infty,-2)
C) (0,2)(0,-2)
D) (,3)(-\infty, 3)
Question
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-1,2)  B)  (2,1)  C)  (2,-1)  D)  (1,2)  <div style=padding-top: 35px>

A) (1,2)(-1,2)
B) (2,1)(2,1)
C) (2,1)(2,-1)
D) (1,2)(1,2)
Question
Find the largest open interval where the function is changing as requested.

-Increasing y=7x5y=7 x-5

A) (,7)(-\infty, 7)
B) (5,7)(-5,7)
C) (,)(-\infty, \infty)
D) (5,)(-5, \infty)
Question
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=14x212xf(x)=\frac{1}{4} x^{2}-\frac{1}{2} x

A) (,1)(-\infty,-1)
B) (,)(-\infty, \infty)
C) (1,)(1, \infty)
D) (1,1)(-1,1)
Question
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=x22x+1f(x)=x^{2}-2 x+1

A) (0,)(0, \infty)
B) (,1)(-\infty, 1)
C) (1,)(1, \infty)
D) (,0)(-\infty, 0)
Question
Find the largest open interval where the function is changing as requested.

-Increasing y=(x29)2y=\left(x^{2}-9\right)^{2}

A) (3,)(3, \infty)
B) (3,0)(-3,0)
C) (3,3)(-3,3)
D) (,0)(-\infty, 0)
Question
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=1x2+1f(x)=\frac{1}{x^{2}+1}

A) (1,)(1, \infty)
B) (,0)(-\infty, 0)
C) (0,)(0, \infty)
D) (,1)(-\infty, 1)
Question
Find the largest open interval where the function is changing as requested.

-Decreasing f(x)=x8f(x)=|x-8|

A) (8,)(8, \infty)
B) (,8)(-\infty, 8)
C) (,8)(-\infty,-8)
D) (8,)(-8, \infty)
Question
Find the largest open interval where the function is changing as requested.

-Decreasing y=1x2+7y=\frac{1}{x^{2}}+7

A) (7,)(7, \infty)
B) (7,7)(-7,7)
C) (0,)(0, \infty)
D) (7,0)(-7,0)
Question
Find the largest open interval where the function is changing as requested.

-Decreasing f(x)=x34xf(x)=x^{3}-4 x

A) (233,233)\left(-\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right)
B) (233,)\left(\frac{2 \sqrt{3}}{3}, \infty\right)
C) (,)(-\infty, \infty)
D) (,233)\left(-\infty,-\frac{2 \sqrt{3}}{3}\right)
Question
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 1 B) 0.5 C) 0 D) 0,1 <div style=padding-top: 35px>

A) 1
B) 0.5
C) 0
D) 0,1
Question
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A)  -1.5,1.5  B)  -3,3  C) none D) 0 <div style=padding-top: 35px>

A) 1.5,1.5-1.5,1.5
B) 3,3-3,3
C) none
D) 0
Question
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 2 B) 0,2 C)  -2,2  D) 0 <div style=padding-top: 35px>

A) 2
B) 0,2
C) 2,2-2,2
D) 0
Question
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) -  1,0,1  B)  -1,1  C) -1 D) 0 <div style=padding-top: 35px>

A) - 1,0,11,0,1
B) 1,1-1,1
C) -1
D) 0
Question
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 0,2 B)  \frac{2}{3}, 2  C)  0, \frac{2}{3}, 2  D) none <div style=padding-top: 35px>

A) 0,2
B) 23,2\frac{2}{3}, 2
C) 0,23,20, \frac{2}{3}, 2
D) none
Question
Determine the location of each local extremum of the function.

- f(x)=x3+72x2+12x+4f(x)=x^{3}+\frac{7}{2} x^{2}+12 x+4

A) Local maximum at 3 ; local minimum at 4
B) Local maximum at -4 ; local minimum at -3
C) No local extrema
D) Local extremum at 3.5
Question
Determine the location of each local extremum of the function.

- f(x)=x31.5x2+36x+3f(x)=-x^{3}-1.5 x^{2}+36 x+3

A) Local maximum at 4 ; local minimum at -3
B) Local maximum at -4 ; local minimum at 3
C) Local maximum at 3 ; local minimum at -4
D) Local maximum at -3 ; local minimum at 4
Question
Determine the location of each local extremum of the function.

- f(x)=x4443x392x2+36x+4f(x)=\frac{x^{4}}{4}-\frac{4}{3} x^{3}-\frac{9}{2} x^{2}+36 x+4

A) Local maxima at -3 and 4 ; local minimum at 3
B) Local maximum at -3 ; local minimum at 4
C) Local maxima at 3 and -4 ; local minimum at 3
D) Local maximum at 3 ; local minima at -3 and 4
Question
Determine the location of each local extremum of the function.

- f(x)=x3+3.5x2+2x3f(x)=x^{3}+3.5 x^{2}+2 x-3

A) Local maximum at 13\frac{1}{3} ; local minimum at 2
B) Local maximum at 23-\frac{2}{3} ; local minimum at -1
C) Local maximum at -2 ; local minimum at 13\frac{-1}{3}
D) Local maximum at 1 ; local minimum at 0.67
Question
Determine the location of each local extremum of the function.

- f(x)=x39x2+27x+1f(x)=x^{3}-9 x^{2}+27 x+1

A) Local minimum at 3
B) Local maximum at 3
C) Local maximum at 3 ; local minimum at -3
D) No local extrema
Question
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=(42x)3/54f(x)=(4-2 x)^{3 / 5}-4

A) No local extrema
B) Local maximum at (2,4)(2,-4)
C) Local minimum at (2,4)(2,-4)
D) Local minimum at (0,4)(0,-4)
Question
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=x2x2+5f(x)=\frac{x^{2}}{x^{2}+5}

A) Local maximum at (0,0)(0,0)
B) No local extrema
C) Local minimum at (0,0)(0,0)
D) Local minimum at (5,0.83333333)(5,0.83333333)
Question
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=3xexf(x)=3 x e^{-x}

A) No local extrema
B) Local minimum at (1,3e)\left(1, \frac{3}{\mathrm{e}}\right)
C) Local maximum at (1,3e)\left(1, \frac{3}{\mathrm{e}}\right)
D) Local minimum at (3,3e)\left(3, \frac{3}{\mathrm{e}}\right)^{\text {) }}
Question
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=x28x+16x5f(x)=\frac{x^{2}-8 x+16}{x-5}

A) No local extrema
B) Local maximum at (4,0)(4,0) ; local minimum at (6,4)(6,4)
C) Local maximum at (0,16)(0,16) ; local minima at (4,0)(4,0) and (14,11.11)(14,11.11)
D) Local maximum at (6,4)(6,4) ; local minimum at (4,0)(4,0)
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x315x2+46x86f(x)=0.1 x^{3}-15 x^{2}+46 x-86

A) Approximate local maximum at -98.442 ; approximate local minimum at -1.558
B) Approximate local maximum at 1.558 ; approximate local minimum at 98.442
C) Approximate local minimum at 1.558 ; approximate local maximum at 98.442
D) Approximate local minimum at -98.442; approximate local maximum at -1.558
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x4x315x2+59x+14f(x)=0.1 x^{4}-x^{3}-15 x^{2}+59 x+14

A) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542
B) Approximate local maximum at 1.801; approximate local minima at -6.723 and 12.642
C) Approximate local maximum at 1.817; approximate local minima at -6.837 and 12.465
D) Approximate local maximum at 1.815 ; approximate local minima at -6.778 and 12.597
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x43x321x2+74x2f(x)=x^{4}-3 x^{3}-21 x^{2}+74 x-2

A) Approximate local maximum at 1.577; approximate local minima at -3.108 and 3.721
B) Approximate local maximum at 1.536 ; approximate local minima at -3.157 and 3.69
C) Approximate local maximum at 1.604; approximate local minima at -3.089 and 3.735
D) Approximate local maximum at 1.671 ; approximate local minima at -3.163 and 3.704
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x44x353x286x+5f(x)=x^{4}-4 x^{3}-53 x^{2}-86 x+5

A) Approximate local maximum at -0.944 ; approximate local minima at -3.192 and 7.136
B) Approximate local maximum at 1.02 ; approximate local minima at -3.167 and 7.046
C) Approximate local maximum at 0.852 ; approximate local minima at -3.234 and 7.127
D) Approximate local maximum at 0.935 ; approximate local minima at -3.119 and 7.198
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x515x43x3172x2+135x+0.002f(x)=x^{5}-15 x^{4}-3 x^{3}-172 x^{2}+135 x+0.002

A) Approximate local maximum at 0.353 ; approximate local minimum at -12.638
B) Approximate local maximum at 0.29 ; approximate local minima at -0.572 and -12.568
C) Approximate local maximum at 0.379 ; approximate local minimum at 12.565
D) Approximate local maximum at 0.379 ; approximate local minima at -0.472 and 12.565
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x5+5x48x315x26x35f(x)=0.1 x^{5}+5 x^{4}-8 x^{3}-15 x^{2}-6 x-35

A) Approximate local maxima at -41.038 and -0.368 ; approximate local minima at -0.564 and 1.858
B) Approximate local maxima at -41.075 and -0.343 ; approximate local minima at -0.616 and 2.021
C) Approximate local maxima at -41.132 and -0.273 ; approximate local minima at -0.547 and 1.952
D) Approximate local maxima at -41.207 and -0.249 ; approximate local minima at -0.513 and 1.976
Question
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.01x5x4+x3+8x27x+87f(x)=0.01 x^{5}-x^{4}+x^{3}+8 x^{2}-7 x+87

A) Approximate local maxima at -1.861 and 2.247 ; approximate local minimum at 0.423
B) Approximate local maxima at -1.85 and 2.165 ; approximate local minima at 0.445 and 79.11
C) Approximate local maxima at -1.864 and 2.282 ; approximate local minima at 0.373 and 79.195
D) Approximate local maxima at -1.861 and 2.247 ; approximate local minima at 0.423 and 79.192
Question
Solve each problem.

-If the price charged for a bolt is pp cents, then xx thousand bolts will be sold in a certain hardware store, where p=125x14p=125-\frac{x}{14} . How many bolts must be sold to maximize revenue?

A) 875 thousand bolts
B) 1750 thousand bolts
C) 875 bolts
D) 1750 bolts
Question
Solve each problem.

-The price PP of a certain computer system decreases immediately after its introduction and then increases. If the price P\mathrm{P} is estimated by the formula P=130t22500t+6900\mathrm{P}=130 \mathrm{t}^{2}-2500 t+6900 , where t\mathrm{t} is the time in months from its introduction, find the time until the minimum price is reached.

A) 19.2 months
B) 38.5 months
C) 12.5 months
D) 9.6 months
Question
Solve each problem.

-A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8\$ 8 per foot for two opposite sides, and $4\$ 4 per foot for the other two sides. Find the dimensions of the field of area 800ft2800 \mathrm{ft}^{2} that would be the cheapest to enclose.

A) 40ft@$840 \mathrm{ft} @ \$ 8 by 20ft@$420 \mathrm{ft} @ \$ 4
B) 20ft@$820 \mathrm{ft} @ \$ 8 by 40ft@$440 \mathrm{ft} @ \$ 4
C) 14.1ft@$814.1 \mathrm{ft} @ \$ 8 by 56.6ft@$456.6 \mathrm{ft} @ \$ 4
D) 56.6ft@$856.6 \mathrm{ft} @ \$ 8 by 14.1ft@$414.1 \mathrm{ft} @ \$ 4
Question
Solve each problem.

-The cost of a computer system increases with increased processor speeds. The cost CC of a system as a function of processor speed is estimated as C=12S29S+1000C=12 S^{2}-9 S+1000 , where SS is the processor speed in MHz. Find the processor speed for which cost is at a minimum.

A) 0.4MHz0.4 \mathrm{MHz}
B) 0.5MHz0.5 \mathrm{MHz}
C) 3MHz3 \mathrm{MHz}
D) 7.5MHz7.5 \mathrm{MHz}
Question
Solve each problem.

-The velocity of a particle (in ft/s\mathrm{ft} / \mathrm{s} ) is given by v=t28t+3\mathrm{v}=\mathrm{t}^{2}-8 \mathrm{t}+3 , where t\mathrm{t} is the time (in seconds) for which it has traveled. Find the time at which the velocity is at a minimum.

A) 3 s3 \mathrm{~s}
B) 1.5 s1.5 \mathrm{~s}
C) 8 s8 \mathrm{~s}
D) 4 s4 \mathrm{~s}
Question
Solve each problem.

-Find the dimensions that produce the maximum floor area for a one-story house that is rectangular in shape and has a perimeter of 157ft157 \mathrm{ft} .

A) 13.08ft×39.25ft13.08 \mathrm{ft} \times 39.25 \mathrm{ft}
B) 78.5ft×78.5ft78.5 \mathrm{ft} \times 78.5 \mathrm{ft}
C) 39.25ft×39.25ft39.25 \mathrm{ft} \times 39.25 \mathrm{ft}
D) 39.25ft×157ft39.25 \mathrm{ft} \times 157 \mathrm{ft}
Question
Solve each problem.

-An architect needs to design a rectangular room with an area of 91ft291 \mathrm{ft}^{2} . What dimensions should she use in order to minimize the perimeter?

A) 9.54ft×9.54ft9.54 \mathrm{ft} \times 9.54 \mathrm{ft}
B) 9.54ft×22.75ft9.54 \mathrm{ft} \times 22.75 \mathrm{ft}
C) 18.2ft×91ft18.2 \mathrm{ft} \times 91 \mathrm{ft}
D) 22.75ft×22.75ft22.75 \mathrm{ft} \times 22.75 \mathrm{ft}
Question
Solve each problem.

-A piece of molding 182 cm182 \mathrm{~cm} long is to be cut to form a rectangular picture frame. What dimensions will enclose the largest area?

A) 13.49 cm×45.5 cm13.49 \mathrm{~cm} \times 45.5 \mathrm{~cm}
B) 36.4 cm×36.4 cm36.4 \mathrm{~cm} \times 36.4 \mathrm{~cm}
C) 45.5 cm×45.5 cm45.5 \mathrm{~cm} \times 45.5 \mathrm{~cm}
D) 13.49 cm×13.49 cm13.49 \mathrm{~cm} \times 13.49 \mathrm{~cm}
Question
Solve each problem.

-Find two numbers whose sum is 440 and whose product is as large as possible.

A) 219 and 221
B) 1 and 439
C) 220 and 220
D) 10 and 430
Question
Solve each problem.

-Find the dimensions of the rectangular field of maximum area that can be made from 140 m140 \mathrm{~m} of fencing material.

A) 35 m35 \mathrm{~m} by 105 m105 \mathrm{~m}
B) 70 m70 \mathrm{~m} by 70 m70 \mathrm{~m}
C) 14 m14 \mathrm{~m} by 126 m126 \mathrm{~m}
D) 35 m35 \mathrm{~m} by 35 m35 \mathrm{~m}
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=3x44x3,c=1f(x)=\frac{3 x-4}{4 x-3}, c=1

A) f(1)=32\mathrm{f}^{\prime \prime}(1)=32
B) f1)=7\left.f^{\prime \prime} 1\right)=7
C) f(1)=44\mathrm{f}^{\prime \prime}(1)=44
D) f(1)=56f^{\prime \prime}(1)=-56
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=3x2x+3,c=2f(x)=\frac{3-x}{2 x+3}, c=-2

A) f(2)=42f^{\prime \prime}(-2)=-42
B) f(2)=24f^{\prime \prime}(-2)=24
C) f(2)=36f^{\prime \prime}(-2)=-36
D) f(2)=9f^{\prime \prime}(-2)=-9
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=x2+23x21,c=0f(x)=\frac{x^{2}+2}{3 x^{2}-1}, c=0

A) f(0)=14f^{\prime \prime}(0)=-14
B) f(0)=10f^{\prime \prime}(0)=-10
C) f(0)=1\mathrm{f}^{\prime \prime}(0)=1
D) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=(x25)(x35),c=1f(x)=\left(x^{2}-5\right)\left(x^{3}-5\right), c=1

A) f(1)=30f^{\prime \prime}(1)=30
B) f(1)=10f^{\prime \prime}(1)=-10
C) f(1)=20f^{\prime \prime}(1)=-20
D) f(1)=10\mathrm{f}^{\prime \prime}(1)=10
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=(x23x+2)(2x6),c=0f(x)=\left(x^{2}-3 x+2\right)(2 x-6), c=0

A) f(0)=22\mathrm{f}^{\prime \prime}(0)=22
B) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
C) f(0)=12f^{\prime \prime}(0)=-12
D) f(0)=24f^{\prime \prime}(0)=-24
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ln(4x3),c=1f(x)=\ln (4 x-3), c=1

A) f(1)=4\mathrm{f}^{\prime \prime}(1)=4
B) f(1)=1\mathrm{f}^{\prime \prime}(1)=1
C) f(1)=16\mathrm{f}^{\prime \prime}(1)=-16
D) f(1)=0\mathrm{f}^{\prime \prime}(1)=0
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ln(3x22),c=1f(x)=\ln \left(3 x^{2}-2\right), c=-1

A) f(1)=1f^{\prime \prime}(-1)=-1
B) f(1)=6f^{\prime \prime}(-1)=-6
C) f(1)=30\mathrm{f}^{\prime \prime}(-1)=30
D) f(1)=30f^{\prime \prime}(-1)=-30
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ex,c=0f(x)=e^{-x}, c=0

A) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
B) f(0)=1\mathrm{f}^{\prime \prime}(0)=-1
C) f(0)=e\mathrm{f}^{\prime \prime}(0)=\mathrm{e}
D) f(0)=1\mathrm{f}^{\prime \prime}(0)=1
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=e3x23,c=1f(x)=e^{3 x^{2}-3}, c=1

A) f(1)=6f^{\prime \prime}(1)=6
B) f(1)=36f^{\prime \prime}(1)=36
C) f(1)=1\mathrm{f}^{\prime \prime}(1)=1
D) f(1)=42\mathrm{f}^{\prime \prime}(1)=42
Question
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=e4x2,c=2f(x)=e^{4-x^{2}}, c=2

A) f(2)=4f^{\prime \prime}(2)=-4
B) f(2)=20f^{\prime \prime}(2)=-20
C) f(2)=1\mathrm{f}^{\prime \prime}(2)=1
D) f(2)=14\mathrm{f}^{\prime \prime}(2)=14
Question
Solve the problem.

-Find the velocity function v(t)v(t) if s(t)=7t37t26t+3s(t)=-7 t^{3}-7 t^{2}-6 t+3 .

A) v(t)=21t26t14v(t)=-21 t^{2}-6 t-14
B) v(t)=21t214t6v(t)=-21 t^{2}-14 t-6
C) v(t)=42t214v(t)=-42 t^{2}-14
D) v(t)=42t26tv(t)=-42 t^{2}-6 t
Question
Solve the problem.

-Find the acceleration function a(t)a(t) if s(t)=9t32t26t7s(t)=-9 t^{3}-2 t^{2}-6 t-7 .

A) a(t)=27t26t4a(t)=-27 t^{2}-6 t-4
B) a(t)=27t24t6a(t)=-27 t^{2}-4 t-6
C) a(t)=54t4a(t)=-54 t-4
D) a(t)=54t6a(t)=-54 t-6
Question
Solve the problem.

-Find the velocity function v(t)v(t) if s(t)=34t+5s(t)=\frac{-3}{4 t+5} .

A) 144(4t+5)3\frac{-144}{(4 t+5)^{3}}
B) 12(4t+5)2\frac{12}{(4 t+5)^{2}}
C) 12(4t+5)2\frac{-12}{(4 t+5)^{2}}
D) 288(4t+5)3\frac{288}{(4 t+5)^{3}}
Question
Solve the problem.

-Find the acceleration function a(t)a(t) if s(t)=35t+5s(t)=\frac{-3}{5 t+5} .

A) 75(5t+5)3\frac{75}{(5 t+5)^{3}}
B) 15(5t+5)2\frac{15}{(5 t+5)^{2}}
C) 15(5t+5)2\frac{-15}{(5 t+5)^{2}}
D) 150(5t+5)3\frac{-150}{(5 t+5)^{3}}
Question
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=1t+2,t=5s=\frac{1}{t+2}, t=5

A) v=2343ft/s,a=149ft/s2v=-\frac{2}{343} \mathrm{ft} / \mathrm{s}, a=\frac{1}{49} \mathrm{ft} / \mathrm{s}^{2}
B) v=2343ft/s,a=149ft/s2\mathrm{v}=\frac{2}{343} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{1}{49} \mathrm{ft} / \mathrm{s}^{2}
C) v=149ft/s,a=2343ft/s2v=\frac{1}{49} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{2}{343} \mathrm{ft} / \mathrm{s}^{2}
D) v=149ft/s,a=2343ft/s2v=-\frac{1}{49} \mathrm{ft} / \mathrm{s}, a=\frac{2}{343} \mathrm{ft} / \mathrm{s}^{2}
Question
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=2t3+7t2+7t+9,t=2s=2 t^{3}+7 t^{2}+7 t+9, t=2

A) v=40ft/s,a=26ft/s2v=40 \mathrm{ft} / \mathrm{s}, a=26 \mathrm{ft} / \mathrm{s}^{2}
B) v=38ft/s,a=59ft/s2v=38 \mathrm{ft} / \mathrm{s}, a=59 \mathrm{ft} / \mathrm{s}^{2}
C) v=26ft/s,a=40ft/s2v=26 \mathrm{ft} / \mathrm{s}, a=40 \mathrm{ft} / \mathrm{s}^{2}
D) v=59ft/s,a=38ft/s2v=59 \mathrm{ft} / \mathrm{s}, a=38 \mathrm{ft} / \mathrm{s}^{2}
Question
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=5t3+6t2+9t+2,t=1s=5 t^{3}+6 t^{2}+9 t+2, t=1

A) v=36ft/s,a=42ft/s2\mathrm{v}=36 \mathrm{ft} / \mathrm{s}, \mathrm{a}=42 \mathrm{ft} / \mathrm{s}^{2}
B) v=27ft/s,a=3ft/s2v=27 \mathrm{ft} / \mathrm{s}, a=3 \mathrm{ft} / \mathrm{s}^{2}
C) v=42ft/s,a=36ft/s2v=42 \mathrm{ft} / \mathrm{s}, a=36 \mathrm{ft} / \mathrm{s}^{2}
D) v=3ft/s,a=27ft/s2v=3 \mathrm{ft} / \mathrm{s}, a=27 \mathrm{ft} / \mathrm{s}^{2}
Question
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=5t3+3t25t4,t=2s=-5 t^{3}+3 t^{2}-5 t-4, t=2

A) v=8ft/s,a=53ft/s2v=-8 \mathrm{ft} / \mathrm{s}, a=-53 \mathrm{ft} / \mathrm{s}^{2}
B) v=53ft/s,a=54ft/s2v=-53 \mathrm{ft} / \mathrm{s}, \mathrm{a}=-54 \mathrm{ft} / \mathrm{s}^{2}
C) v=54ft/s,a=53ft/s2v=-54 \mathrm{ft} / \mathrm{s}, a=-53 \mathrm{ft} / \mathrm{s}^{2}
D) v=53ft/s,a=8ft/s2v=-53 \mathrm{ft} / \mathrm{s}, a=-8 \mathrm{ft} / \mathrm{s}^{2}
Question
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=t25,t=3s=\sqrt{t^{2}-5}, t=3

A) v=58ft/s,a=1.5ft/s2\mathrm{v}=-\frac{5}{8} \mathrm{ft} / \mathrm{s}, \mathrm{a}=1.5 \mathrm{ft} / \mathrm{s}^{2}
B) v=1.5ft/s,a=58ft/s2\mathrm{v}=1.5 \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{5}{8} \mathrm{ft} / \mathrm{s}^{2}
C) v=1.5ft/s,a=58ft/s2\mathrm{v}=-1.5 \mathrm{ft} / \mathrm{s}, \mathrm{a}=\frac{5}{8} \mathrm{ft} / \mathrm{s}^{2}
D) v=58ft/s,a=1.5ft/s2\mathrm{v}=\frac{5}{8} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-1.5 \mathrm{ft} / \mathrm{s}^{2}
Question
Find the coordinates of the points of inflection for the function.

- f(x)=x2+6x+11f(x)=x^{2}+6 x+11

A) (4,1)(-4,1)
B) (3,2)(-3,2)
C) (2,3)(-2,3)
D) There are no points of inflection.
Question
Find the coordinates of the points of inflection for the function.

- f(x)=x3+9x2+24x+21f(x)=x^{3}+9 x^{2}+24 x+21

A) (4,5)(-4,5)
B) (2,1)(-2,1)
C) (3,3)(-3,3)
D) There are no points of inflection.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/220
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Applications of the Derivative
1
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) (-2,0),(-1,2),(2,1)  B)  (-3,-1),(-2,0),(2,1)  C) (-3,-1),(-1,2),(2,1)  D)  (-3,-1),(-1,2),(-2,0)

A) (2,0),(1,2),(2,1)(-2,0),(-1,2),(2,1)
B) (3,1),(2,0),(2,1)(-3,-1),(-2,0),(2,1)
C) (3,1),(1,2),(2,1)(-3,-1),(-1,2),(2,1)
D) (3,1),(1,2),(2,0)(-3,-1),(-1,2),(-2,0)
(3,1),(1,2),(2,1)(-3,-1),(-1,2),(2,1)
2
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (3,-2)  B)  (3,-2),(6,0)  C)  (0,0),(3,-2),(6,0)  D)  (0,0),(6,0)

A) (3,2)(3,-2)
B) (3,2),(6,0)(3,-2),(6,0)
C) (0,0),(3,2),(6,0)(0,0),(3,-2),(6,0)
D) (0,0),(6,0)(0,0),(6,0)
(3,2)(3,-2)
3
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (2,0)  B) None C)  (-2,3)  D)  (-2,3),(2,0)

A) (2,0)(2,0)
B) None
C) (2,3)(-2,3)
D) (2,3),(2,0)(-2,3),(2,0)
(2,3),(2,0)(-2,3),(2,0)
4
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (1,0)  B)  (1,2)  C) None D)  (0,1)

A) (1,0)(1,0)
B) (1,2)(1,2)
C) None
D) (0,1)(0,1)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
5
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (2,1),(-2,-1)  B)  (2,1)  C) None D)  (-2,-1)

A) (2,1),(2,1)(2,1),(-2,-1)
B) (2,1)(2,1)
C) None
D) (2,1)(-2,-1)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
6
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) None B)  (-2,5),(0,0),(2,5)  C)  (-2,5),(2,5)  D)  (0,0)

A) None
B) (2,5),(0,0),(2,5)(-2,5),(0,0),(2,5)
C) (2,5),(2,5)(-2,5),(2,5)
D) (0,0)(0,0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
7
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A) None B)  (0,2)  C)  (-2,0)  D)  (0,2),(-2,0)

A) None
B) (0,2)(0,2)
C) (2,0)(-2,0)
D) (0,2),(2,0)(0,2),(-2,0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
8
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-3.5,0),(-2,2),(1.5,0),(3.1,2)  B)  (-3.5,0),(1.5,0)  C)  (-2,2),(1.5,0)  D) None

A) (3.5,0),(2,2),(1.5,0),(3.1,2)(-3.5,0),(-2,2),(1.5,0),(3.1,2)
B) (3.5,0),(1.5,0)(-3.5,0),(1.5,0)
C) (2,2),(1.5,0)(-2,2),(1.5,0)
D) None
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
9
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-3,0),(3.75,0)  B)  (1.5,-1)  C)  (-6,3),(1.5,-1),(4.2,2)  D) None

A) (3,0),(3.75,0)(-3,0),(3.75,0)
B) (1.5,1)(1.5,-1)
C) (6,3),(1.5,1),(4.2,2)(-6,3),(1.5,-1),(4.2,2)
D) None
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
10
Find the location and value of each local extremum for the function.

- <strong>Find the location and value of each local extremum for the function.  -  </strong> A)  (-5.5,-3),(-3.5,-1.5),(3.5,1.5),(5.5,3)  B)  (-3.5,-1.5),(3.5,1.5)  C)  (-5.5,-3),(5.5,3)  D) None

A) (5.5,3),(3.5,1.5),(3.5,1.5),(5.5,3)(-5.5,-3),(-3.5,-1.5),(3.5,1.5),(5.5,3)
B) (3.5,1.5),(3.5,1.5)(-3.5,-1.5),(3.5,1.5)
C) (5.5,3),(5.5,3)(-5.5,-3),(5.5,3)
D) None
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
11
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-3, \infty)  B)  (-3,3)  C)  (-2, \infty)  D)  (-2,2)

A) (3,)(-3, \infty)
B) (3,3)(-3,3)
C) (2,)(-2, \infty)
D) (2,2)(-2,2)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
12
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-\infty, 0)  B)  (0,3)  C)  (-1,0)  D)  (3, \infty)

A) (,0)(-\infty, 0)
B) (0,3)(0,3)
C) (1,0)(-1,0)
D) (3,)(3, \infty)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
13
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (3, \infty)  B)  (-2, \infty)  C)  (-2,0)  D)  (3,6)

A) (3,)(3, \infty)
B) (2,)(-2, \infty)
C) (2,0)(-2,0)
D) (3,6)(3,6)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
14
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-1,2)  B)  (-2,-1) \cup(2, \infty)  C)  (-2,-1)  D)  (-1, \infty)

A) (1,2)(-1,2)
B) (2,1)(2,)(-2,-1) \cup(2, \infty)
C) (2,1)(-2,-1)
D) (1,)(-1, \infty)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
15
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  B)  (0,5)  C)  (1,6)  D)  (0,6)

A) <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  B)  (0,5)  C)  (1,6)  D)  (0,6)
B) (0,5)(0,5)
C) (1,6)(1,6)
D) (0,6)(0,6)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
16
Identify the intervals where the function is changing as requested.

-Increasing
 <strong>Identify the intervals where the function is changing as requested.  -Increasing   </strong> A)  (-1,0)  B)  (0,3)  C)  (-\infty,-1)  D)  (-\infty, 0)

A) (1,0)(-1,0)
B) (0,3)(0,3)
C) (,1)(-\infty,-1)
D) (,0)(-\infty, 0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
17
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-\infty,-2)  B)  (-3,-2)  C)  (-\infty,-3)  D)  (0,-2)

A) (,2)(-\infty,-2)
B) (3,2)(-3,-2)
C) (,3)(-\infty,-3)
D) (0,2)(0,-2)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
18
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (5,1)  B)  (5,12)  C)  (6,1)  D)  (6,12)

A) (5,1)(5,1)
B) (5,12)(5,12)
C) (6,1)(6,1)
D) (6,12)(6,12)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
19
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (0,3)  B)  (-\infty,-2)  C)  (0,-2)  D)  (-\infty, 3)

A) (0,3)(0,3)
B) (,2)(-\infty,-2)
C) (0,2)(0,-2)
D) (,3)(-\infty, 3)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
20
Identify the intervals where the function is changing as requested.

-Decreasing
 <strong>Identify the intervals where the function is changing as requested.  -Decreasing   </strong> A)  (-1,2)  B)  (2,1)  C)  (2,-1)  D)  (1,2)

A) (1,2)(-1,2)
B) (2,1)(2,1)
C) (2,1)(2,-1)
D) (1,2)(1,2)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
21
Find the largest open interval where the function is changing as requested.

-Increasing y=7x5y=7 x-5

A) (,7)(-\infty, 7)
B) (5,7)(-5,7)
C) (,)(-\infty, \infty)
D) (5,)(-5, \infty)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
22
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=14x212xf(x)=\frac{1}{4} x^{2}-\frac{1}{2} x

A) (,1)(-\infty,-1)
B) (,)(-\infty, \infty)
C) (1,)(1, \infty)
D) (1,1)(-1,1)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
23
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=x22x+1f(x)=x^{2}-2 x+1

A) (0,)(0, \infty)
B) (,1)(-\infty, 1)
C) (1,)(1, \infty)
D) (,0)(-\infty, 0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
24
Find the largest open interval where the function is changing as requested.

-Increasing y=(x29)2y=\left(x^{2}-9\right)^{2}

A) (3,)(3, \infty)
B) (3,0)(-3,0)
C) (3,3)(-3,3)
D) (,0)(-\infty, 0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
25
Find the largest open interval where the function is changing as requested.

-Increasing f(x)=1x2+1f(x)=\frac{1}{x^{2}+1}

A) (1,)(1, \infty)
B) (,0)(-\infty, 0)
C) (0,)(0, \infty)
D) (,1)(-\infty, 1)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
26
Find the largest open interval where the function is changing as requested.

-Decreasing f(x)=x8f(x)=|x-8|

A) (8,)(8, \infty)
B) (,8)(-\infty, 8)
C) (,8)(-\infty,-8)
D) (8,)(-8, \infty)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
27
Find the largest open interval where the function is changing as requested.

-Decreasing y=1x2+7y=\frac{1}{x^{2}}+7

A) (7,)(7, \infty)
B) (7,7)(-7,7)
C) (0,)(0, \infty)
D) (7,0)(-7,0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
28
Find the largest open interval where the function is changing as requested.

-Decreasing f(x)=x34xf(x)=x^{3}-4 x

A) (233,233)\left(-\frac{2 \sqrt{3}}{3}, \frac{2 \sqrt{3}}{3}\right)
B) (233,)\left(\frac{2 \sqrt{3}}{3}, \infty\right)
C) (,)(-\infty, \infty)
D) (,233)\left(-\infty,-\frac{2 \sqrt{3}}{3}\right)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
29
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 1 B) 0.5 C) 0 D) 0,1

A) 1
B) 0.5
C) 0
D) 0,1
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
30
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A)  -1.5,1.5  B)  -3,3  C) none D) 0

A) 1.5,1.5-1.5,1.5
B) 3,3-3,3
C) none
D) 0
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
31
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 2 B) 0,2 C)  -2,2  D) 0

A) 2
B) 0,2
C) 2,2-2,2
D) 0
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
32
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) -  1,0,1  B)  -1,1  C) -1 D) 0

A) - 1,0,11,0,1
B) 1,1-1,1
C) -1
D) 0
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
33
The graph of the derivative function ff^{\prime} is given. Find the critical numbers of the function ff .

- <strong>The graph of the derivative function  f^{\prime}  is given. Find the critical numbers of the function  f .  - </strong> A) 0,2 B)  \frac{2}{3}, 2  C)  0, \frac{2}{3}, 2  D) none

A) 0,2
B) 23,2\frac{2}{3}, 2
C) 0,23,20, \frac{2}{3}, 2
D) none
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
34
Determine the location of each local extremum of the function.

- f(x)=x3+72x2+12x+4f(x)=x^{3}+\frac{7}{2} x^{2}+12 x+4

A) Local maximum at 3 ; local minimum at 4
B) Local maximum at -4 ; local minimum at -3
C) No local extrema
D) Local extremum at 3.5
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
35
Determine the location of each local extremum of the function.

- f(x)=x31.5x2+36x+3f(x)=-x^{3}-1.5 x^{2}+36 x+3

A) Local maximum at 4 ; local minimum at -3
B) Local maximum at -4 ; local minimum at 3
C) Local maximum at 3 ; local minimum at -4
D) Local maximum at -3 ; local minimum at 4
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
36
Determine the location of each local extremum of the function.

- f(x)=x4443x392x2+36x+4f(x)=\frac{x^{4}}{4}-\frac{4}{3} x^{3}-\frac{9}{2} x^{2}+36 x+4

A) Local maxima at -3 and 4 ; local minimum at 3
B) Local maximum at -3 ; local minimum at 4
C) Local maxima at 3 and -4 ; local minimum at 3
D) Local maximum at 3 ; local minima at -3 and 4
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
37
Determine the location of each local extremum of the function.

- f(x)=x3+3.5x2+2x3f(x)=x^{3}+3.5 x^{2}+2 x-3

A) Local maximum at 13\frac{1}{3} ; local minimum at 2
B) Local maximum at 23-\frac{2}{3} ; local minimum at -1
C) Local maximum at -2 ; local minimum at 13\frac{-1}{3}
D) Local maximum at 1 ; local minimum at 0.67
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
38
Determine the location of each local extremum of the function.

- f(x)=x39x2+27x+1f(x)=x^{3}-9 x^{2}+27 x+1

A) Local minimum at 3
B) Local maximum at 3
C) Local maximum at 3 ; local minimum at -3
D) No local extrema
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
39
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=(42x)3/54f(x)=(4-2 x)^{3 / 5}-4

A) No local extrema
B) Local maximum at (2,4)(2,-4)
C) Local minimum at (2,4)(2,-4)
D) Local minimum at (0,4)(0,-4)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
40
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=x2x2+5f(x)=\frac{x^{2}}{x^{2}+5}

A) Local maximum at (0,0)(0,0)
B) No local extrema
C) Local minimum at (0,0)(0,0)
D) Local minimum at (5,0.83333333)(5,0.83333333)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
41
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=3xexf(x)=3 x e^{-x}

A) No local extrema
B) Local minimum at (1,3e)\left(1, \frac{3}{\mathrm{e}}\right)
C) Local maximum at (1,3e)\left(1, \frac{3}{\mathrm{e}}\right)
D) Local minimum at (3,3e)\left(3, \frac{3}{\mathrm{e}}\right)^{\text {) }}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
42
Use the first derivative test to determine the location of each local extremum and the value of the function at thatextremum.

- f(x)=x28x+16x5f(x)=\frac{x^{2}-8 x+16}{x-5}

A) No local extrema
B) Local maximum at (4,0)(4,0) ; local minimum at (6,4)(6,4)
C) Local maximum at (0,16)(0,16) ; local minima at (4,0)(4,0) and (14,11.11)(14,11.11)
D) Local maximum at (6,4)(6,4) ; local minimum at (4,0)(4,0)
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
43
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x315x2+46x86f(x)=0.1 x^{3}-15 x^{2}+46 x-86

A) Approximate local maximum at -98.442 ; approximate local minimum at -1.558
B) Approximate local maximum at 1.558 ; approximate local minimum at 98.442
C) Approximate local minimum at 1.558 ; approximate local maximum at 98.442
D) Approximate local minimum at -98.442; approximate local maximum at -1.558
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
44
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x4x315x2+59x+14f(x)=0.1 x^{4}-x^{3}-15 x^{2}+59 x+14

A) Approximate local maximum at 1.735; approximate local minima at -6.777 and 12.542
B) Approximate local maximum at 1.801; approximate local minima at -6.723 and 12.642
C) Approximate local maximum at 1.817; approximate local minima at -6.837 and 12.465
D) Approximate local maximum at 1.815 ; approximate local minima at -6.778 and 12.597
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
45
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x43x321x2+74x2f(x)=x^{4}-3 x^{3}-21 x^{2}+74 x-2

A) Approximate local maximum at 1.577; approximate local minima at -3.108 and 3.721
B) Approximate local maximum at 1.536 ; approximate local minima at -3.157 and 3.69
C) Approximate local maximum at 1.604; approximate local minima at -3.089 and 3.735
D) Approximate local maximum at 1.671 ; approximate local minima at -3.163 and 3.704
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
46
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x44x353x286x+5f(x)=x^{4}-4 x^{3}-53 x^{2}-86 x+5

A) Approximate local maximum at -0.944 ; approximate local minima at -3.192 and 7.136
B) Approximate local maximum at 1.02 ; approximate local minima at -3.167 and 7.046
C) Approximate local maximum at 0.852 ; approximate local minima at -3.234 and 7.127
D) Approximate local maximum at 0.935 ; approximate local minima at -3.119 and 7.198
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
47
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=x515x43x3172x2+135x+0.002f(x)=x^{5}-15 x^{4}-3 x^{3}-172 x^{2}+135 x+0.002

A) Approximate local maximum at 0.353 ; approximate local minimum at -12.638
B) Approximate local maximum at 0.29 ; approximate local minima at -0.572 and -12.568
C) Approximate local maximum at 0.379 ; approximate local minimum at 12.565
D) Approximate local maximum at 0.379 ; approximate local minima at -0.472 and 12.565
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
48
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.1x5+5x48x315x26x35f(x)=0.1 x^{5}+5 x^{4}-8 x^{3}-15 x^{2}-6 x-35

A) Approximate local maxima at -41.038 and -0.368 ; approximate local minima at -0.564 and 1.858
B) Approximate local maxima at -41.075 and -0.343 ; approximate local minima at -0.616 and 2.021
C) Approximate local maxima at -41.132 and -0.273 ; approximate local minima at -0.547 and 1.952
D) Approximate local maxima at -41.207 and -0.249 ; approximate local minima at -0.513 and 1.976
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
49
Use the maximum/minimum finder on a graphing calculator to determine the approximate location of all local extrema.

- f(x)=0.01x5x4+x3+8x27x+87f(x)=0.01 x^{5}-x^{4}+x^{3}+8 x^{2}-7 x+87

A) Approximate local maxima at -1.861 and 2.247 ; approximate local minimum at 0.423
B) Approximate local maxima at -1.85 and 2.165 ; approximate local minima at 0.445 and 79.11
C) Approximate local maxima at -1.864 and 2.282 ; approximate local minima at 0.373 and 79.195
D) Approximate local maxima at -1.861 and 2.247 ; approximate local minima at 0.423 and 79.192
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
50
Solve each problem.

-If the price charged for a bolt is pp cents, then xx thousand bolts will be sold in a certain hardware store, where p=125x14p=125-\frac{x}{14} . How many bolts must be sold to maximize revenue?

A) 875 thousand bolts
B) 1750 thousand bolts
C) 875 bolts
D) 1750 bolts
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
51
Solve each problem.

-The price PP of a certain computer system decreases immediately after its introduction and then increases. If the price P\mathrm{P} is estimated by the formula P=130t22500t+6900\mathrm{P}=130 \mathrm{t}^{2}-2500 t+6900 , where t\mathrm{t} is the time in months from its introduction, find the time until the minimum price is reached.

A) 19.2 months
B) 38.5 months
C) 12.5 months
D) 9.6 months
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
52
Solve each problem.

-A rectangular field is to be enclosed on four sides with a fence. Fencing costs $8\$ 8 per foot for two opposite sides, and $4\$ 4 per foot for the other two sides. Find the dimensions of the field of area 800ft2800 \mathrm{ft}^{2} that would be the cheapest to enclose.

A) 40ft@$840 \mathrm{ft} @ \$ 8 by 20ft@$420 \mathrm{ft} @ \$ 4
B) 20ft@$820 \mathrm{ft} @ \$ 8 by 40ft@$440 \mathrm{ft} @ \$ 4
C) 14.1ft@$814.1 \mathrm{ft} @ \$ 8 by 56.6ft@$456.6 \mathrm{ft} @ \$ 4
D) 56.6ft@$856.6 \mathrm{ft} @ \$ 8 by 14.1ft@$414.1 \mathrm{ft} @ \$ 4
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
53
Solve each problem.

-The cost of a computer system increases with increased processor speeds. The cost CC of a system as a function of processor speed is estimated as C=12S29S+1000C=12 S^{2}-9 S+1000 , where SS is the processor speed in MHz. Find the processor speed for which cost is at a minimum.

A) 0.4MHz0.4 \mathrm{MHz}
B) 0.5MHz0.5 \mathrm{MHz}
C) 3MHz3 \mathrm{MHz}
D) 7.5MHz7.5 \mathrm{MHz}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
54
Solve each problem.

-The velocity of a particle (in ft/s\mathrm{ft} / \mathrm{s} ) is given by v=t28t+3\mathrm{v}=\mathrm{t}^{2}-8 \mathrm{t}+3 , where t\mathrm{t} is the time (in seconds) for which it has traveled. Find the time at which the velocity is at a minimum.

A) 3 s3 \mathrm{~s}
B) 1.5 s1.5 \mathrm{~s}
C) 8 s8 \mathrm{~s}
D) 4 s4 \mathrm{~s}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
55
Solve each problem.

-Find the dimensions that produce the maximum floor area for a one-story house that is rectangular in shape and has a perimeter of 157ft157 \mathrm{ft} .

A) 13.08ft×39.25ft13.08 \mathrm{ft} \times 39.25 \mathrm{ft}
B) 78.5ft×78.5ft78.5 \mathrm{ft} \times 78.5 \mathrm{ft}
C) 39.25ft×39.25ft39.25 \mathrm{ft} \times 39.25 \mathrm{ft}
D) 39.25ft×157ft39.25 \mathrm{ft} \times 157 \mathrm{ft}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
56
Solve each problem.

-An architect needs to design a rectangular room with an area of 91ft291 \mathrm{ft}^{2} . What dimensions should she use in order to minimize the perimeter?

A) 9.54ft×9.54ft9.54 \mathrm{ft} \times 9.54 \mathrm{ft}
B) 9.54ft×22.75ft9.54 \mathrm{ft} \times 22.75 \mathrm{ft}
C) 18.2ft×91ft18.2 \mathrm{ft} \times 91 \mathrm{ft}
D) 22.75ft×22.75ft22.75 \mathrm{ft} \times 22.75 \mathrm{ft}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
57
Solve each problem.

-A piece of molding 182 cm182 \mathrm{~cm} long is to be cut to form a rectangular picture frame. What dimensions will enclose the largest area?

A) 13.49 cm×45.5 cm13.49 \mathrm{~cm} \times 45.5 \mathrm{~cm}
B) 36.4 cm×36.4 cm36.4 \mathrm{~cm} \times 36.4 \mathrm{~cm}
C) 45.5 cm×45.5 cm45.5 \mathrm{~cm} \times 45.5 \mathrm{~cm}
D) 13.49 cm×13.49 cm13.49 \mathrm{~cm} \times 13.49 \mathrm{~cm}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
58
Solve each problem.

-Find two numbers whose sum is 440 and whose product is as large as possible.

A) 219 and 221
B) 1 and 439
C) 220 and 220
D) 10 and 430
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
59
Solve each problem.

-Find the dimensions of the rectangular field of maximum area that can be made from 140 m140 \mathrm{~m} of fencing material.

A) 35 m35 \mathrm{~m} by 105 m105 \mathrm{~m}
B) 70 m70 \mathrm{~m} by 70 m70 \mathrm{~m}
C) 14 m14 \mathrm{~m} by 126 m126 \mathrm{~m}
D) 35 m35 \mathrm{~m} by 35 m35 \mathrm{~m}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
60
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=3x44x3,c=1f(x)=\frac{3 x-4}{4 x-3}, c=1

A) f(1)=32\mathrm{f}^{\prime \prime}(1)=32
B) f1)=7\left.f^{\prime \prime} 1\right)=7
C) f(1)=44\mathrm{f}^{\prime \prime}(1)=44
D) f(1)=56f^{\prime \prime}(1)=-56
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=3x2x+3,c=2f(x)=\frac{3-x}{2 x+3}, c=-2

A) f(2)=42f^{\prime \prime}(-2)=-42
B) f(2)=24f^{\prime \prime}(-2)=24
C) f(2)=36f^{\prime \prime}(-2)=-36
D) f(2)=9f^{\prime \prime}(-2)=-9
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=x2+23x21,c=0f(x)=\frac{x^{2}+2}{3 x^{2}-1}, c=0

A) f(0)=14f^{\prime \prime}(0)=-14
B) f(0)=10f^{\prime \prime}(0)=-10
C) f(0)=1\mathrm{f}^{\prime \prime}(0)=1
D) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
63
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=(x25)(x35),c=1f(x)=\left(x^{2}-5\right)\left(x^{3}-5\right), c=1

A) f(1)=30f^{\prime \prime}(1)=30
B) f(1)=10f^{\prime \prime}(1)=-10
C) f(1)=20f^{\prime \prime}(1)=-20
D) f(1)=10\mathrm{f}^{\prime \prime}(1)=10
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
64
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=(x23x+2)(2x6),c=0f(x)=\left(x^{2}-3 x+2\right)(2 x-6), c=0

A) f(0)=22\mathrm{f}^{\prime \prime}(0)=22
B) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
C) f(0)=12f^{\prime \prime}(0)=-12
D) f(0)=24f^{\prime \prime}(0)=-24
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ln(4x3),c=1f(x)=\ln (4 x-3), c=1

A) f(1)=4\mathrm{f}^{\prime \prime}(1)=4
B) f(1)=1\mathrm{f}^{\prime \prime}(1)=1
C) f(1)=16\mathrm{f}^{\prime \prime}(1)=-16
D) f(1)=0\mathrm{f}^{\prime \prime}(1)=0
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ln(3x22),c=1f(x)=\ln \left(3 x^{2}-2\right), c=-1

A) f(1)=1f^{\prime \prime}(-1)=-1
B) f(1)=6f^{\prime \prime}(-1)=-6
C) f(1)=30\mathrm{f}^{\prime \prime}(-1)=30
D) f(1)=30f^{\prime \prime}(-1)=-30
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=ex,c=0f(x)=e^{-x}, c=0

A) f(0)=0\mathrm{f}^{\prime \prime}(0)=0
B) f(0)=1\mathrm{f}^{\prime \prime}(0)=-1
C) f(0)=e\mathrm{f}^{\prime \prime}(0)=\mathrm{e}
D) f(0)=1\mathrm{f}^{\prime \prime}(0)=1
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=e3x23,c=1f(x)=e^{3 x^{2}-3}, c=1

A) f(1)=6f^{\prime \prime}(1)=6
B) f(1)=36f^{\prime \prime}(1)=36
C) f(1)=1\mathrm{f}^{\prime \prime}(1)=1
D) f(1)=42\mathrm{f}^{\prime \prime}(1)=42
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
69
Evaluate f(c)\mathrm{f}^{\prime \prime}(\mathrm{c}) at the point.

- f(x)=e4x2,c=2f(x)=e^{4-x^{2}}, c=2

A) f(2)=4f^{\prime \prime}(2)=-4
B) f(2)=20f^{\prime \prime}(2)=-20
C) f(2)=1\mathrm{f}^{\prime \prime}(2)=1
D) f(2)=14\mathrm{f}^{\prime \prime}(2)=14
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
70
Solve the problem.

-Find the velocity function v(t)v(t) if s(t)=7t37t26t+3s(t)=-7 t^{3}-7 t^{2}-6 t+3 .

A) v(t)=21t26t14v(t)=-21 t^{2}-6 t-14
B) v(t)=21t214t6v(t)=-21 t^{2}-14 t-6
C) v(t)=42t214v(t)=-42 t^{2}-14
D) v(t)=42t26tv(t)=-42 t^{2}-6 t
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
71
Solve the problem.

-Find the acceleration function a(t)a(t) if s(t)=9t32t26t7s(t)=-9 t^{3}-2 t^{2}-6 t-7 .

A) a(t)=27t26t4a(t)=-27 t^{2}-6 t-4
B) a(t)=27t24t6a(t)=-27 t^{2}-4 t-6
C) a(t)=54t4a(t)=-54 t-4
D) a(t)=54t6a(t)=-54 t-6
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
72
Solve the problem.

-Find the velocity function v(t)v(t) if s(t)=34t+5s(t)=\frac{-3}{4 t+5} .

A) 144(4t+5)3\frac{-144}{(4 t+5)^{3}}
B) 12(4t+5)2\frac{12}{(4 t+5)^{2}}
C) 12(4t+5)2\frac{-12}{(4 t+5)^{2}}
D) 288(4t+5)3\frac{288}{(4 t+5)^{3}}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
73
Solve the problem.

-Find the acceleration function a(t)a(t) if s(t)=35t+5s(t)=\frac{-3}{5 t+5} .

A) 75(5t+5)3\frac{75}{(5 t+5)^{3}}
B) 15(5t+5)2\frac{15}{(5 t+5)^{2}}
C) 15(5t+5)2\frac{-15}{(5 t+5)^{2}}
D) 150(5t+5)3\frac{-150}{(5 t+5)^{3}}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
74
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=1t+2,t=5s=\frac{1}{t+2}, t=5

A) v=2343ft/s,a=149ft/s2v=-\frac{2}{343} \mathrm{ft} / \mathrm{s}, a=\frac{1}{49} \mathrm{ft} / \mathrm{s}^{2}
B) v=2343ft/s,a=149ft/s2\mathrm{v}=\frac{2}{343} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{1}{49} \mathrm{ft} / \mathrm{s}^{2}
C) v=149ft/s,a=2343ft/s2v=\frac{1}{49} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{2}{343} \mathrm{ft} / \mathrm{s}^{2}
D) v=149ft/s,a=2343ft/s2v=-\frac{1}{49} \mathrm{ft} / \mathrm{s}, a=\frac{2}{343} \mathrm{ft} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
75
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=2t3+7t2+7t+9,t=2s=2 t^{3}+7 t^{2}+7 t+9, t=2

A) v=40ft/s,a=26ft/s2v=40 \mathrm{ft} / \mathrm{s}, a=26 \mathrm{ft} / \mathrm{s}^{2}
B) v=38ft/s,a=59ft/s2v=38 \mathrm{ft} / \mathrm{s}, a=59 \mathrm{ft} / \mathrm{s}^{2}
C) v=26ft/s,a=40ft/s2v=26 \mathrm{ft} / \mathrm{s}, a=40 \mathrm{ft} / \mathrm{s}^{2}
D) v=59ft/s,a=38ft/s2v=59 \mathrm{ft} / \mathrm{s}, a=38 \mathrm{ft} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
76
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=5t3+6t2+9t+2,t=1s=5 t^{3}+6 t^{2}+9 t+2, t=1

A) v=36ft/s,a=42ft/s2\mathrm{v}=36 \mathrm{ft} / \mathrm{s}, \mathrm{a}=42 \mathrm{ft} / \mathrm{s}^{2}
B) v=27ft/s,a=3ft/s2v=27 \mathrm{ft} / \mathrm{s}, a=3 \mathrm{ft} / \mathrm{s}^{2}
C) v=42ft/s,a=36ft/s2v=42 \mathrm{ft} / \mathrm{s}, a=36 \mathrm{ft} / \mathrm{s}^{2}
D) v=3ft/s,a=27ft/s2v=3 \mathrm{ft} / \mathrm{s}, a=27 \mathrm{ft} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
77
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=5t3+3t25t4,t=2s=-5 t^{3}+3 t^{2}-5 t-4, t=2

A) v=8ft/s,a=53ft/s2v=-8 \mathrm{ft} / \mathrm{s}, a=-53 \mathrm{ft} / \mathrm{s}^{2}
B) v=53ft/s,a=54ft/s2v=-53 \mathrm{ft} / \mathrm{s}, \mathrm{a}=-54 \mathrm{ft} / \mathrm{s}^{2}
C) v=54ft/s,a=53ft/s2v=-54 \mathrm{ft} / \mathrm{s}, a=-53 \mathrm{ft} / \mathrm{s}^{2}
D) v=53ft/s,a=8ft/s2v=-53 \mathrm{ft} / \mathrm{s}, a=-8 \mathrm{ft} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
78
s\mathrm{s} is the distance (in ft\mathrm{ft} ) traveled in time t\mathrm{t} (in s) by a particle. Find the velocity and acceleration at the given time.

- s=t25,t=3s=\sqrt{t^{2}-5}, t=3

A) v=58ft/s,a=1.5ft/s2\mathrm{v}=-\frac{5}{8} \mathrm{ft} / \mathrm{s}, \mathrm{a}=1.5 \mathrm{ft} / \mathrm{s}^{2}
B) v=1.5ft/s,a=58ft/s2\mathrm{v}=1.5 \mathrm{ft} / \mathrm{s}, \mathrm{a}=-\frac{5}{8} \mathrm{ft} / \mathrm{s}^{2}
C) v=1.5ft/s,a=58ft/s2\mathrm{v}=-1.5 \mathrm{ft} / \mathrm{s}, \mathrm{a}=\frac{5}{8} \mathrm{ft} / \mathrm{s}^{2}
D) v=58ft/s,a=1.5ft/s2\mathrm{v}=\frac{5}{8} \mathrm{ft} / \mathrm{s}, \mathrm{a}=-1.5 \mathrm{ft} / \mathrm{s}^{2}
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
79
Find the coordinates of the points of inflection for the function.

- f(x)=x2+6x+11f(x)=x^{2}+6 x+11

A) (4,1)(-4,1)
B) (3,2)(-3,2)
C) (2,3)(-2,3)
D) There are no points of inflection.
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
80
Find the coordinates of the points of inflection for the function.

- f(x)=x3+9x2+24x+21f(x)=x^{3}+9 x^{2}+24 x+21

A) (4,5)(-4,5)
B) (2,1)(-2,1)
C) (3,3)(-3,3)
D) There are no points of inflection.
Unlock Deck
Unlock for access to all 220 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 220 flashcards in this deck.