Deck 1: Introduction and Vectors

Full screen (f)
exit full mode
Question
One U.S.fluid gallon contains a volume of 231 cubic inches.How many liters of gasoline would you have to buy in Canada to fill a 14-gallon tank? (Note: 1L = 10+3 cm3. )

A)53
B)21
C)14
D)8.0
E)4.0
Use Space or
up arrow
down arrow
to flip the card.
Question
John and Linda are arguing about the definition of density.John says the density of an object is proportional to its mass.Linda says the object's mass is proportional to its density and to its volume.Which one,if either,is correct?

A)They are both wrong.
B)John is correct,but Linda is wrong.
C)John is wrong,but Linda is correct.
D)They are both correct.
E)They are free to redefine density as they wish.
Question
Which one of the quantities below has dimensions equal to [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] ?

A)mv
B)mv2
C) mv2r\frac { m v ^ { 2 } } { r }
D)mrv
E) mv2r2\frac { m v ^ { 2 } } { r ^ { 2 } }
Question
If you drove day and night without stopping for one year without exceeding the legal highway speed limit in the United States,the maximum number of miles you could drive would be closest to:

A)8 700.
B)300 000.
C)500 000.
D)1 000 000.
E)32 000 000.
Question
If each frame of a motion picture film is 35 cm high,and 24 frames go by in a second,estimate how many frames are needed to show a two hour long movie.

A)1 400
B)25 000
C)50 000
D)170 000
E)This cannot be determined without knowing how many reels were used.
Question
Which of the following products of ratios gives the conversion factor to convert miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) to meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) ?

A) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
B) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
D) 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
E) 5280fmi12inf2.54 cm1in1 m100 cm3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
Question
One number has three significant figures and another number has four significant figures.If these numbers are added,subtracted,multiplied,or divided,which operation can produce the greatest number of significant figures?

A)the addition
B)the subtraction
C)the multiplication
D)the division
E)All the operations result in the same number of significant figures.
Question
The density of an object is defined as:

A)the volume occupied by each unit of mass.
B)the amount of mass for each unit of volume.
C)the weight of each unit of volume.
D)the amount of the substance that has unit volume and unit mass.
E)the amount of the substance that contains as many particles as 12 grams of the carbon-12 isotope.
Question
The answer to a question is [MLT - 1].The question is "What are the dimensions of

A)mr?"
B)mvr?"
C)ma?"
D)mat?"
E) mv2r\frac { m v ^ { 2 } } { r } ?"
Question
The quantity with the same units as force times time,Ft,with dimensions MLT - 1 is

A)mv
B)mvr
C)mv2r
D)ma
E) mv2r\frac { m v ^ { 2 } } { r }
Question
A standard exam page is 8.5 inches by 11 inches.An exam that is 2.0 mm thick has a volume of

A)1.9 * 104 mm3.
B)4.7 * 104 mm3.
C)1.2 *105 mm3.
D)3.1 * 105 mm3.
E)3.1 * 103 mm3.
Question
The equation for the change of position of a train starting at x = 0 m is given by x=12at2+bt3x = \frac { 1 } { 2 } a t ^ { 2 } + b t ^ { 3 } .The dimensions of b are

A)T - 3
B)LT - 3
C)LT - 2
D)LT - 1
E)L - 1T - 1
Question
One mole of the carbon-12 isotope contains 6.022 * 1023 atoms.What volume in m3 would be needed to store one mole of cube-shaped children's blocks 2.00 cm long on each side?

A)4.8 * 1018
B)1.2 *1022
C)6.0 * 1023
D)1.2 *1024
E)4.8 *1024
Question
Which of the following products of ratios gives the conversion factors to convert meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) to miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) ?

A) 5280fmi12inf2.54 cm1in100 cm1 m3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
B) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
D) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
E) 1mi5280f1f12in1in2.54 cm1 m100 cm3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
Question
Find the average density of a red giant star with a mass of 20 * 1030 kg (approximately 10 solar masses)and a radius of 150 *109 m (equal to the Earth's distance from the sun).

A)1.41*10-4 kg/m3
B)0.007 kg/m3
C)1.41 kg/m3
D)710 kg/m3
E)1.41*10 - 3 kg/m3
Question
Which of the following quantities has the same dimensions as kinetic energy, 12mv2\frac { 1 } { 2 } m v ^ { 2 } ? Note: [a] = [g] = LT - 2;[h] = L and [v] = LT - 1.

A)ma
B)mvx
C)mvt
D)mgh
E)mgt
Question
Which quantity can be converted from the English system to the metric system by the conversion factor 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} } ?

A)feet per second
B)feet per hour
C)miles per second
D)miles per hour
E)miles per minute
Question
The term 12ρv2\frac { 1 } { 2 } \rho v ^ { 2 } occurs in Bernoulli's equation in Chapter 15,with ρ\rho being the density of a fluid and v its speed.The dimensions of this term are

A)M - 1L5T2
B)MLT2
C)ML - 1T - 2
D)M - 1L9T - 2
E)M - 1L3T - 2
Question
Find the average density of a white dwarf star if it has a mass equal to that of the sun (2.0 * 1030 kg)and a radius equal to that of the Earth (6.4*106 m).

A)9.0 * 106 kg/m3
B)1.8* 107 kg/m3
C)1.8 * 109 kg/m3
D)3.6 * 1010 kg/m3
E)9.0 *107 kg/m3
Question
Spike claims that dimensional analysis shows that the correct expression for change in velocity, vfvi\vec { v } _ { f } - \vec { v } _ { i } ,is vfvi=mtF\vec { v } _ { f } - \vec { v } _ { i } = \frac { m t } { F } ,where m is mass,t is time,and F is the magnitude of force.Carla says that can't be true because the dimensions of force are [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] .Which one,if either,is correct?

A)Spike,because [v]=[MLT][ \vec { v } ] = \left[ \frac { M L } { T } \right] .
B)Spike,because [v]=[T2L][ \vec { v } ] = \left[ \frac { T ^ { 2 } } { L } \right] .
C)Carla,because [v]=[LT][ \vec { v } ] = \left[ \frac { L } { T } \right] .
D)Carla,because [v]=[LMT][ \overrightarrow { \mathrm { v } } ] = \left[ \frac { \mathrm { L } } { \mathrm { MT } } \right] .
E)Spike,because the dimensions of force are [F]=[T2ML][ \overrightarrow { \mathrm { F } } ] = \left[ \frac { \mathrm { T } ^ { 2 } } { \mathrm { ML } } \right] .
Question
Vectors A\overrightarrow { \mathbf { A } } and B\vec { B } are shown.What is the magnitude of a vector C\overrightarrow { \mathrm { C } } if C=AB\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  <strong>Vectors  \overrightarrow { \mathbf { A } }  and  \vec { B }  are shown.What is the magnitude of a vector  \overrightarrow { \mathrm { C } }  if  \overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  </strong> A)46 B)10 C)30 D)78 E)90 <div style=padding-top: 35px>

A)46
B)10
C)30
D)78
E)90
Question
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is B\vec { B } ?

A) B=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) B=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) B=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) B=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) B=12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
Question
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents AB+2C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Given that A+2B=x1i^+y1j^\overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and 2AB=x2i^+y2j^2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=15(x1+2x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
B) A=15(x12x2)i^+15(y12y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } - 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 2 y _ { 2 } \right) \hat { \mathbf { j } }
C) A=15(x1+4x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
D) A=15(x1+4x2)i^+15(y1+4y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 4 y _ { 2 } \right) \hat { \mathbf { j } }
E) A=15(x1+4x2)i^+15(y14y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 4 y _ { 2 } \right) \hat { \mathbf { j } }
Question
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the direction of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)-49 °\degree
B)-41 °\degree
C)-90 °\degree
D)+49 °\degree
E)+21 °\degree
Question
A vector, B\vec { B } ,when added to the vector C=3i^+4j^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } yields a resultant vector which is in the positive y direction and has a magnitude equal to that of C\overrightarrow { \mathrm { C } } .What is the magnitude of B\vec { B } ?

A)3.2
B)6.3
C)9.5
D)18
E)5
Question
If vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,the result is 9i^8j^- 9 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .If B\vec { B } is subtracted from C\overrightarrow { \mathrm { C } } ,the result is 5i~+4j^5 \tilde { \mathbf { i } } + 4 \hat { \mathbf { j } } .What is the direction of B\vec { B } (to the nearest degree)?

A)225 °\degree
B)221 °\degree
C)230 °\degree
D)236 °\degree
E)206 °\degree
Question
A rectangle has a length of 1.323 m and a width of 4.16 m.Using significant figure rules,what is the area of this rectangle?

A)5.503 68 m2
B)5.503 7 m2
C)5.504 m2
D)5.50 m2
E)5.5 m2
Question
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the magnitude of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)42
B)22
C)64
D)90
E)13
Question
Anthony has added the vectors listed below and gotten the result R=9i^+4j^+6k^\overrightarrow { \mathbf { R } } = 9 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } + 6 \hat { \mathbf { k } } .What errors has he made? A=3i~+4j~5k~\overrightarrow { \mathbf { A } } = 3 \tilde { \mathbf { i } } + 4 \tilde{ \mathbf { j } } - 5 \tilde { \mathbf { k } } B=3i^+2j^+8k^\overrightarrow { \mathbf { B } } = - 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 8 \hat { \mathbf { k } } C=3i^2j^+2k^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }

A)He lost the minus sign in vector B\vec { B } .
B)He read the 2k~2 \tilde { \mathbf { k } } in C\overrightarrow { \mathrm { C } } as 3k~3 \tilde { \mathbf { k } } .
C)He lost the minus sign in vector A\overrightarrow { \mathrm { A } } .
D)All of the above are correct.
E)Only (a)and (b)above are correct.
Question
Given two non-zero vectors, A\overrightarrow { \mathbf { A } } and B\vec { B } ,such that A=A=B=B| \overrightarrow { \mathrm { A } } | = A = B = | \overrightarrow { \mathrm { B } } | ,the sum A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } satisfies

A) 0A+B2A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
B) 0<A+B<2A0 < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
C) AA+B2AA \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
D) A<A+B<2AA < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
E) 0A+B4A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 4 A .
Question
The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  <strong>The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  </strong> A)  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }  B)  \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }  C)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }  D)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }  E)  2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }  <div style=padding-top: 35px>

A) A+B=AC\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }
B) A+B=BC\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }
C) AB=2AC\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }
D) AB=2A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }
E) 2A+2B=2C2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }
Question
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) A=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) A=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) A=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) A=12(x1+x2)i^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } }
Question
If vector B\vec { B } is added to vector A\overrightarrow { \mathrm { A } } ,the result is 6i~+j^6 \tilde { \mathbf { i } } + \hat { \mathbf { j } } .If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the result is 4i~+7j~- 4 \tilde { \mathbf { i } } + 7 \tilde { \mathbf { j } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)5.1
B)4.1
C)5.4
D)5.8
E)8.2
Question
Dana says any vector R\overrightarrow { \mathrm { R } } can be represented as the sum of two vectors: R=A+B\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .Ardis says any vector R\overrightarrow { \mathrm { R } } can be represented as the difference of two vectors: R=AB\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathbf { B } } .Which one,if either,is correct?

A)They are both wrong: every vector is unique.
B)Dana is correct: Any vector can be represented as a sum of components and not as a difference.
C)Ardis is correct: Any vector can be represented as a difference of vector components and not as a sum.
D)They are both correct: A difference of vectors is a sum
R=A+(B)\overrightarrow { \mathbf { R } } = \overrightarrow { \mathbf { A } } + ( - \overrightarrow { \mathbf { B } } ) .
E)They are both wrong: Vectors can be moved as long as they keep the same magnitude and direction.
Question
Adding vectors A\overrightarrow { \mathrm { A } } and B\vec { B } by the graphical method gives the same result for A\overrightarrow { \mathrm { A } } + B\vec { B } and B\vec { B } + A\overrightarrow { \mathrm { A } }
If both additions are done graphically from the same origin,the resultant is the vector that goes from the tail of the first vector to the tip of the second vector,i.e,it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure.Note that a parallelogram has 2 diagonals.Keara says that the sum of two vectors by the parallelogram method is R=5i^\overrightarrow { \mathbf { R } } = 5 \hat { \mathbf { i } }
Shamu says it is R=i^+4j^\overrightarrow { \mathbf { R } } = \hat { \mathbf { i } } + 4 \hat { \mathbf { j } }
Both used the parallelogram method,but one used the wrong diagonal.Which one of the vector pairs below contains the original two vectors?

A) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
B) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
C) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^+2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
D) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
E) A=+3i^+2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
Question
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>  Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents A+B+C\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)   <div style=padding-top: 35px>
Question
Given the statement that AB=A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = - \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } } ,what can we conclude?

A) C=A\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } and B=A\overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { A } } .
B) 2A=B+C2 \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }
C) C=B\overrightarrow { \mathrm { C } } = - \overrightarrow { \mathrm { B } } and A=A- \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { A } } .
D)Any one of the answers above is correct.
E)Only (a)and (b)may be correct.
Question
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to that of A\overrightarrow { \mathrm { A } } .What is the direction of A\overrightarrow { \mathrm { A } } ?

A)74 °\degree
B)100 °\degree
C)-81 °\degree
D)-62 °\degree
E)106 °\degree
Question
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)11
B)5.1
C)7.1
D)8.3
E)12.2
Question
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.If the vector is now rotated 90 degrees counterclockwise relative to the original axes,the vector's components are now

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
Question
When three vectors, A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are placed head to tail,the vector sum A+B+C=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } = 0 .If the vectors all have the same magnitude,the angle between the directions of any two adjacent vectors is

A)30 °\degree
B)60 °\degree
C)90 °\degree
D)120 °\degree
E)150 °\degree
Question
Exhibit 3-1
 <strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s)..  -Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?</strong> A)35 \degree  B)45 \degree  C)65 \degree  D)55 \degree  E)85 \degree  <div style=padding-top: 35px>
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..

-Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?

A)35 °\degree
B)45 °\degree
C)65 °\degree
D)55 °\degree
E)85 °\degree
Question
The displacement of the tip of the 10 cm long minute hand of a clock between 12:15 A.M.and 12:45 P.M.is:

A)10 cm,90 °\degree
B)10 cm,180 °\degree
C)10 cm,4 500 °\degree
D)20 cm,180 °\degree
E)20 cm,540 °\degree
Question
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What distance separates the two oases?

A)15 km
B)48 km
C)28 km
D)53 km
E)55 km
Question
Which statement is true about the unit vectors î, ĵ and k̂ ?

A)Their directions are defined by a left-handed coordinate system.
B)The angle between any two is 90 degrees.
C)Each has a length of 1 m.
D)If î is directed east and ĵ is directed south, k̂ points up out of the surface.
E)All of the above.
Question
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What is the direction from the first oasis to the second oasis?

A)21 °\degree N of W
B)39 °\degree W of N
C)69 °\degree N of W
D)51 °\degree W of N
E)42 °\degree W of N
Question
Exhibit 3-1
<strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s).. Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?</strong> A)27.0 N B)33.2 N C)36.3 N D)23.8 N E)105 N <div style=padding-top: 35px>
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..
Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?

A)27.0 N
B)33.2 N
C)36.3 N
D)23.8 N
E)105 N
Question
Exhibit 3-2
 <strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-2.The child's displacement is:</strong> A)  2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }  B)  2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }  C)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }  D)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }  E)  3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }  <div style=padding-top: 35px>
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-2.The child's displacement is:

A) 2i^+2j^+2k^2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }
B) 2.8i~+2.8j~+2k~2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }
C) 2i~+2j~+2.8k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }
D) 2i~+2j~+3.5k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }
E) 3.5i^+3.5j^+3.5k^3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
Question
If vector C\overrightarrow { \mathrm { C } } is added to vector D\overrightarrow { \mathrm { D } } ,the result is a third vector that is perpendicular to D\overrightarrow { \mathrm { D } } and has a magnitude equal to 3 D\overrightarrow { \mathrm { D } } .What is the ratio of the magnitude of C\overrightarrow { \mathrm { C } } to that of D\overrightarrow { \mathrm { D } } ?

A)1.8
B)2.2
C)3.2
D)1.3
E)1.6
Question
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total distance it travels is</strong> A)1 000 m. B)1 732 m. C)2 000 m. D)6 298 m. E)8 000 m. <div style=padding-top: 35px>
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total distance it travels is

A)1 000 m.
B)1 732 m.
C)2 000 m.
D)6 298 m.
E)8 000 m.
Question
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\overrightarrow { \mathbf { B } } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
Question
Exhibit 3-2
<strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s). Refer to Exhibit 3-2.What is the child's distance from her starting position?</strong> A)2.8 m B)3.5 m C)6.0 m D)6.9 m E)12.0 m <div style=padding-top: 35px>
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-2.What is the child's distance from her starting position?

A)2.8 m
B)3.5 m
C)6.0 m
D)6.9 m
E)12.0 m
Question
A student decides to spend spring break by driving 50 miles due east,then 50 miles 30 degrees south of east,then 50 miles 30 degrees south of that direction,and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position.How far will he drive,and how many vectors must he sum to calculate his displacement?

A)0,0
B)0,8
C)0,12
D)400 mi,8
E)600 mi,12
Question
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is</strong> A)1 732 m,East. B)2 000 m,Northeast. C)6 298 m,East. D)8 000 m,Southeast. E)8 000 m,East. <div style=padding-top: 35px>
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is

A)1 732 m,East.
B)2 000 m,Northeast.
C)6 298 m,East.
D)8 000 m,Southeast.
E)8 000 m,East.
Question
Vectors A\overrightarrow { \mathrm { A } } and B\vec { B } have equal magnitudes.Which statement is always true?

A) A+B=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = 0 .
B) AB=0\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 0 .
C) AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } is perpendicular to A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
D) BA\overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { A } } is perpendicular to AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } .
E)The magnitude of AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } equals the magnitude of A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
Question
When vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,which has a magnitude of 5.0,the vector representing their sum is perpendicular to A\overrightarrow { \mathrm { A } } and has a magnitude that is twice that of A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.2
B)2.5
C)4.5
D)5.0
E)7.0
Question
The rectangular coordinates of a point are (5.00,y)and the polar coordinates of this point are (r,67.4°).What is the value of the polar coordinate r in this case?

A)1.92
B)4.62
C)12.0
D)13.0
E)More information is needed.
Question
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.Along a set of axes rotated 90 degrees counterclockwise relative to the original axes,the vector's components are

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
Question
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
Question
What is the mass of air in a room that measures 5.0 m * 8.0 m * 3.0 m? (The density of air is 1/800 that of water).
Question
A vector starts at coordinate (3.0,4.0)and ends at coordinate (-2.0,16.0).What are the magnitude and direction of this vector?
Question
The basic function of a carburetor of an automobile is to atomize the gasoline and mix it with air to promote rapid combustion.As an example,assume that 30 cm3 of gasoline is atomized into N spherical droplets,each with a radius of 2.0 *10 - 5 m.What is the total surface area of these N spherical droplets?
Question
The standard kilogram is a platinum-iridium cylinder 39 mm in height and 39 mm in diameter.What is the density of the material?
Question
A 2.00 m by 3.00 m plate of aluminum has a mass of 324 kg.What is the thickness of the plate? (The density of aluminum is 2.70 * 103 kg/m3. )
Question
What two vectors are each the same magnitude as and perpendicular to What two vectors are each the same magnitude as and perpendicular to   ? <div style=padding-top: 35px> ?
Question
A problem may be solved more easily when alternative representations are used.The best strategy is to formulate representations in an order that assists in understanding the physical principles involved.Of the orders given below,the one that will work best most often is

A)pictorial representation,mathematical representation,tabular representation,mental representation.
B)pictorial representation,mental representation,mathematical representation,tabular representation.
C)mathematical representation,pictorial representation,tabular representation,mental representation.
D)mathematical representation,tabular representation,mental representation,pictorial representation.
E)mental representation,pictorial representation,tabular representation,mathematical representation.
Question
In what quadrant are both the sine and tangent negative?

A)1st
B)2nd
C)3rd
D)4th
E)This cannot happen.
Question
Two vectors starting at the same origin have equal and opposite x components.Is it possible for the two vectors to be perpendicular to each other? Justify your answer.
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/69
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 1: Introduction and Vectors
1
One U.S.fluid gallon contains a volume of 231 cubic inches.How many liters of gasoline would you have to buy in Canada to fill a 14-gallon tank? (Note: 1L = 10+3 cm3. )

A)53
B)21
C)14
D)8.0
E)4.0
53
2
John and Linda are arguing about the definition of density.John says the density of an object is proportional to its mass.Linda says the object's mass is proportional to its density and to its volume.Which one,if either,is correct?

A)They are both wrong.
B)John is correct,but Linda is wrong.
C)John is wrong,but Linda is correct.
D)They are both correct.
E)They are free to redefine density as they wish.
They are both correct.
3
Which one of the quantities below has dimensions equal to [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] ?

A)mv
B)mv2
C) mv2r\frac { m v ^ { 2 } } { r }
D)mrv
E) mv2r2\frac { m v ^ { 2 } } { r ^ { 2 } }
mv2r\frac { m v ^ { 2 } } { r }
4
If you drove day and night without stopping for one year without exceeding the legal highway speed limit in the United States,the maximum number of miles you could drive would be closest to:

A)8 700.
B)300 000.
C)500 000.
D)1 000 000.
E)32 000 000.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
5
If each frame of a motion picture film is 35 cm high,and 24 frames go by in a second,estimate how many frames are needed to show a two hour long movie.

A)1 400
B)25 000
C)50 000
D)170 000
E)This cannot be determined without knowing how many reels were used.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
6
Which of the following products of ratios gives the conversion factor to convert miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) to meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) ?

A) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
B) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
D) 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
E) 5280fmi12inf2.54 cm1in1 m100 cm3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
7
One number has three significant figures and another number has four significant figures.If these numbers are added,subtracted,multiplied,or divided,which operation can produce the greatest number of significant figures?

A)the addition
B)the subtraction
C)the multiplication
D)the division
E)All the operations result in the same number of significant figures.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
8
The density of an object is defined as:

A)the volume occupied by each unit of mass.
B)the amount of mass for each unit of volume.
C)the weight of each unit of volume.
D)the amount of the substance that has unit volume and unit mass.
E)the amount of the substance that contains as many particles as 12 grams of the carbon-12 isotope.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
9
The answer to a question is [MLT - 1].The question is "What are the dimensions of

A)mr?"
B)mvr?"
C)ma?"
D)mat?"
E) mv2r\frac { m v ^ { 2 } } { r } ?"
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
10
The quantity with the same units as force times time,Ft,with dimensions MLT - 1 is

A)mv
B)mvr
C)mv2r
D)ma
E) mv2r\frac { m v ^ { 2 } } { r }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
11
A standard exam page is 8.5 inches by 11 inches.An exam that is 2.0 mm thick has a volume of

A)1.9 * 104 mm3.
B)4.7 * 104 mm3.
C)1.2 *105 mm3.
D)3.1 * 105 mm3.
E)3.1 * 103 mm3.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
12
The equation for the change of position of a train starting at x = 0 m is given by x=12at2+bt3x = \frac { 1 } { 2 } a t ^ { 2 } + b t ^ { 3 } .The dimensions of b are

A)T - 3
B)LT - 3
C)LT - 2
D)LT - 1
E)L - 1T - 1
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
13
One mole of the carbon-12 isotope contains 6.022 * 1023 atoms.What volume in m3 would be needed to store one mole of cube-shaped children's blocks 2.00 cm long on each side?

A)4.8 * 1018
B)1.2 *1022
C)6.0 * 1023
D)1.2 *1024
E)4.8 *1024
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
14
Which of the following products of ratios gives the conversion factors to convert meters per second (ms)\left( \frac { \mathrm { m } } { \mathrm { s } } \right) to miles per hour (mih)\left( \frac { \mathrm { mi } } { \mathrm { h } } \right) ?

A) 5280fmi12inf2.54 cm1in100 cm1 m3600 s1 h\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
B) 5280fmi12inf1in2.54 cm1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
C) 5280fmi12inf2.54 cm1in100 cm1 m1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} }
D) 1mi5280f1f12in1in2.54 cm100 cm1 m3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 100 \mathrm {~cm} } { 1 \mathrm {~m} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
E) 1mi5280f1f12in1in2.54 cm1 m100 cm3600 s1 h\frac { 1 \mathrm { mi } } { 5280 \mathrm { f } } \cdot \frac { 1 \mathrm { f } } { 12 \mathrm { in } } \cdot \frac { 1 \mathrm { in } } { 2.54 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 3600 \mathrm {~s} } { 1 \mathrm {~h} }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
15
Find the average density of a red giant star with a mass of 20 * 1030 kg (approximately 10 solar masses)and a radius of 150 *109 m (equal to the Earth's distance from the sun).

A)1.41*10-4 kg/m3
B)0.007 kg/m3
C)1.41 kg/m3
D)710 kg/m3
E)1.41*10 - 3 kg/m3
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
16
Which of the following quantities has the same dimensions as kinetic energy, 12mv2\frac { 1 } { 2 } m v ^ { 2 } ? Note: [a] = [g] = LT - 2;[h] = L and [v] = LT - 1.

A)ma
B)mvx
C)mvt
D)mgh
E)mgt
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
17
Which quantity can be converted from the English system to the metric system by the conversion factor 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} } ?

A)feet per second
B)feet per hour
C)miles per second
D)miles per hour
E)miles per minute
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
18
The term 12ρv2\frac { 1 } { 2 } \rho v ^ { 2 } occurs in Bernoulli's equation in Chapter 15,with ρ\rho being the density of a fluid and v its speed.The dimensions of this term are

A)M - 1L5T2
B)MLT2
C)ML - 1T - 2
D)M - 1L9T - 2
E)M - 1L3T - 2
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
19
Find the average density of a white dwarf star if it has a mass equal to that of the sun (2.0 * 1030 kg)and a radius equal to that of the Earth (6.4*106 m).

A)9.0 * 106 kg/m3
B)1.8* 107 kg/m3
C)1.8 * 109 kg/m3
D)3.6 * 1010 kg/m3
E)9.0 *107 kg/m3
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
20
Spike claims that dimensional analysis shows that the correct expression for change in velocity, vfvi\vec { v } _ { f } - \vec { v } _ { i } ,is vfvi=mtF\vec { v } _ { f } - \vec { v } _ { i } = \frac { m t } { F } ,where m is mass,t is time,and F is the magnitude of force.Carla says that can't be true because the dimensions of force are [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] .Which one,if either,is correct?

A)Spike,because [v]=[MLT][ \vec { v } ] = \left[ \frac { M L } { T } \right] .
B)Spike,because [v]=[T2L][ \vec { v } ] = \left[ \frac { T ^ { 2 } } { L } \right] .
C)Carla,because [v]=[LT][ \vec { v } ] = \left[ \frac { L } { T } \right] .
D)Carla,because [v]=[LMT][ \overrightarrow { \mathrm { v } } ] = \left[ \frac { \mathrm { L } } { \mathrm { MT } } \right] .
E)Spike,because the dimensions of force are [F]=[T2ML][ \overrightarrow { \mathrm { F } } ] = \left[ \frac { \mathrm { T } ^ { 2 } } { \mathrm { ML } } \right] .
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
21
Vectors A\overrightarrow { \mathbf { A } } and B\vec { B } are shown.What is the magnitude of a vector C\overrightarrow { \mathrm { C } } if C=AB\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  <strong>Vectors  \overrightarrow { \mathbf { A } }  and  \vec { B }  are shown.What is the magnitude of a vector  \overrightarrow { \mathrm { C } }  if  \overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  </strong> A)46 B)10 C)30 D)78 E)90

A)46
B)10
C)30
D)78
E)90
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
22
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is B\vec { B } ?

A) B=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) B=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) B=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) B=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) B=12(y1y2)j^\overrightarrow { \mathbf { B } } = \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
23
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)    Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents AB+2C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } + 2 \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
24
Given that A+2B=x1i^+y1j^\overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and 2AB=x2i^+y2j^2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=15(x1+2x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
B) A=15(x12x2)i^+15(y12y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } - 2 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 2 y _ { 2 } \right) \hat { \mathbf { j } }
C) A=15(x1+4x2)i^+15(y1+2y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 2 y _ { 2 } \right) \hat { \mathbf { j } }
D) A=15(x1+4x2)i^+15(y1+4y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } + 4 y _ { 2 } \right) \hat { \mathbf { j } }
E) A=15(x1+4x2)i^+15(y14y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 5 } \left( x _ { 1 } + 4 x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 5 } \left( y _ { 1 } - 4 y _ { 2 } \right) \hat { \mathbf { j } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
25
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the direction of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)-49 °\degree
B)-41 °\degree
C)-90 °\degree
D)+49 °\degree
E)+21 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
26
A vector, B\vec { B } ,when added to the vector C=3i^+4j^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } yields a resultant vector which is in the positive y direction and has a magnitude equal to that of C\overrightarrow { \mathrm { C } } .What is the magnitude of B\vec { B } ?

A)3.2
B)6.3
C)9.5
D)18
E)5
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
27
If vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,the result is 9i^8j^- 9 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .If B\vec { B } is subtracted from C\overrightarrow { \mathrm { C } } ,the result is 5i~+4j^5 \tilde { \mathbf { i } } + 4 \hat { \mathbf { j } } .What is the direction of B\vec { B } (to the nearest degree)?

A)225 °\degree
B)221 °\degree
C)230 °\degree
D)236 °\degree
E)206 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
28
A rectangle has a length of 1.323 m and a width of 4.16 m.Using significant figure rules,what is the area of this rectangle?

A)5.503 68 m2
B)5.503 7 m2
C)5.504 m2
D)5.50 m2
E)5.5 m2
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
29
If A=12i^16j^\overrightarrow { \mathbf { A } } = 12 \hat { \mathbf { i } } - 16 \hat { \mathbf { j } } and B=24i^+10j^\overrightarrow { \mathbf { B } } = - 24 \hat { \mathbf { i } } + 10 \hat { \mathbf { j } } ,what is the magnitude of the vector C=2AB\overrightarrow { \mathrm { C } } = 2 \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

A)42
B)22
C)64
D)90
E)13
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
30
Anthony has added the vectors listed below and gotten the result R=9i^+4j^+6k^\overrightarrow { \mathbf { R } } = 9 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } + 6 \hat { \mathbf { k } } .What errors has he made? A=3i~+4j~5k~\overrightarrow { \mathbf { A } } = 3 \tilde { \mathbf { i } } + 4 \tilde{ \mathbf { j } } - 5 \tilde { \mathbf { k } } B=3i^+2j^+8k^\overrightarrow { \mathbf { B } } = - 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 8 \hat { \mathbf { k } } C=3i^2j^+2k^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }

A)He lost the minus sign in vector B\vec { B } .
B)He read the 2k~2 \tilde { \mathbf { k } } in C\overrightarrow { \mathrm { C } } as 3k~3 \tilde { \mathbf { k } } .
C)He lost the minus sign in vector A\overrightarrow { \mathrm { A } } .
D)All of the above are correct.
E)Only (a)and (b)above are correct.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
31
Given two non-zero vectors, A\overrightarrow { \mathbf { A } } and B\vec { B } ,such that A=A=B=B| \overrightarrow { \mathrm { A } } | = A = B = | \overrightarrow { \mathrm { B } } | ,the sum A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } satisfies

A) 0A+B2A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
B) 0<A+B<2A0 < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
C) AA+B2AA \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 2 A .
D) A<A+B<2AA < | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | < 2 A .
E) 0A+B4A0 \leq | \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } | \leq 4 A .
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
32
The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  <strong>The diagram below shows 3 vectors which sum to zero,all of equal length.Which statement below is true?  </strong> A)  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }  B)  \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }  C)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }  D)  \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }  E)  2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }

A) A+B=AC\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { C } }
B) A+B=BC\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { C } }
C) AB=2AC\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { C } }
D) AB=2A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } }
E) 2A+2B=2C2 \overrightarrow { \mathbf { A } } + 2 \overrightarrow { \mathbf { B } } = 2 \overrightarrow { \mathbf { C } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
33
Given that A+B=x1i^+y1j^\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = x _ { 1 } \hat { \mathbf { i } } + y _ { 1 } \hat { \mathbf { j } } and AB=x2i^+y2j^\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = x _ { 2 } \hat { \mathbf { i } } + y _ { 2 } \hat { \mathbf { j } } ,what is A\overrightarrow { \mathrm { A } } ?

A) A=12(x1x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
B) A=12(x1+x2)i^+12(y1y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } - y _ { 2 } \right) \hat { \mathbf { j } }
C) A=12(x1x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } - x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
D) A=12(x1+x2)i^+12(y1+y2)j^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } } + \frac { 1 } { 2 } \left( y _ { 1 } + y _ { 2 } \right) \hat { \mathbf { j } }
E) A=12(x1+x2)i^\overrightarrow { \mathbf { A } } = \frac { 1 } { 2 } \left( x _ { 1 } + x _ { 2 } \right) \hat { \mathbf { i } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
34
If vector B\vec { B } is added to vector A\overrightarrow { \mathrm { A } } ,the result is 6i~+j^6 \tilde { \mathbf { i } } + \hat { \mathbf { j } } .If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the result is 4i~+7j~- 4 \tilde { \mathbf { i } } + 7 \tilde { \mathbf { j } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)5.1
B)4.1
C)5.4
D)5.8
E)8.2
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
35
Dana says any vector R\overrightarrow { \mathrm { R } } can be represented as the sum of two vectors: R=A+B\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .Ardis says any vector R\overrightarrow { \mathrm { R } } can be represented as the difference of two vectors: R=AB\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathbf { B } } .Which one,if either,is correct?

A)They are both wrong: every vector is unique.
B)Dana is correct: Any vector can be represented as a sum of components and not as a difference.
C)Ardis is correct: Any vector can be represented as a difference of vector components and not as a sum.
D)They are both correct: A difference of vectors is a sum
R=A+(B)\overrightarrow { \mathbf { R } } = \overrightarrow { \mathbf { A } } + ( - \overrightarrow { \mathbf { B } } ) .
E)They are both wrong: Vectors can be moved as long as they keep the same magnitude and direction.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
36
Adding vectors A\overrightarrow { \mathrm { A } } and B\vec { B } by the graphical method gives the same result for A\overrightarrow { \mathrm { A } } + B\vec { B } and B\vec { B } + A\overrightarrow { \mathrm { A } }
If both additions are done graphically from the same origin,the resultant is the vector that goes from the tail of the first vector to the tip of the second vector,i.e,it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure.Note that a parallelogram has 2 diagonals.Keara says that the sum of two vectors by the parallelogram method is R=5i^\overrightarrow { \mathbf { R } } = 5 \hat { \mathbf { i } }
Shamu says it is R=i^+4j^\overrightarrow { \mathbf { R } } = \hat { \mathbf { i } } + 4 \hat { \mathbf { j } }
Both used the parallelogram method,but one used the wrong diagonal.Which one of the vector pairs below contains the original two vectors?

A) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
B) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
C) A=3i^2j^\overrightarrow { \mathbf { A } } = - 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^+2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
D) A=+3i^2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } ; B=+2i^2j^\overrightarrow { \mathbf { B } } = + 2 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } }
E) A=+3i^+2j^\overrightarrow { \mathbf { A } } = + 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } ; B=2i^+2j^\overrightarrow { \mathbf { B } } = - 2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
37
Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)    Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-3.Which diagram below correctly represents A+B+C\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } ?

A)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
B)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
C)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
D)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
E)  <strong>Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ?</strong> A)   B)   C)   D)   E)
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
38
Given the statement that AB=A+C\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = - \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { C } } ,what can we conclude?

A) C=A\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } and B=A\overrightarrow { \mathrm { B } } = \overrightarrow { \mathrm { A } } .
B) 2A=B+C2 \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }
C) C=B\overrightarrow { \mathrm { C } } = - \overrightarrow { \mathrm { B } } and A=A- \overrightarrow { \mathbf { A } } = \overrightarrow { \mathbf { A } } .
D)Any one of the answers above is correct.
E)Only (a)and (b)may be correct.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
39
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to that of A\overrightarrow { \mathrm { A } } .What is the direction of A\overrightarrow { \mathrm { A } } ?

A)74 °\degree
B)100 °\degree
C)-81 °\degree
D)-62 °\degree
E)106 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
40
A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)11
B)5.1
C)7.1
D)8.3
E)12.2
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
41
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.If the vector is now rotated 90 degrees counterclockwise relative to the original axes,the vector's components are now

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
42
When three vectors, A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are placed head to tail,the vector sum A+B+C=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } = 0 .If the vectors all have the same magnitude,the angle between the directions of any two adjacent vectors is

A)30 °\degree
B)60 °\degree
C)90 °\degree
D)120 °\degree
E)150 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
43
Exhibit 3-1
 <strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s)..  -Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?</strong> A)35 \degree  B)45 \degree  C)65 \degree  D)55 \degree  E)85 \degree
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..

-Refer to Exhibit 3-1.What is the direction of the resultant of these three forces?

A)35 °\degree
B)45 °\degree
C)65 °\degree
D)55 °\degree
E)85 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
44
The displacement of the tip of the 10 cm long minute hand of a clock between 12:15 A.M.and 12:45 P.M.is:

A)10 cm,90 °\degree
B)10 cm,180 °\degree
C)10 cm,4 500 °\degree
D)20 cm,180 °\degree
E)20 cm,540 °\degree
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
45
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What distance separates the two oases?

A)15 km
B)48 km
C)28 km
D)53 km
E)55 km
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
46
Which statement is true about the unit vectors î, ĵ and k̂ ?

A)Their directions are defined by a left-handed coordinate system.
B)The angle between any two is 90 degrees.
C)Each has a length of 1 m.
D)If î is directed east and ĵ is directed south, k̂ points up out of the surface.
E)All of the above.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
47
Starting from one oasis,a camel walks 25 km in a direction 30 °\degree south of west and then walks 30 km toward the north to a second oasis.What is the direction from the first oasis to the second oasis?

A)21 °\degree N of W
B)39 °\degree W of N
C)69 °\degree N of W
D)51 °\degree W of N
E)42 °\degree W of N
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
48
Exhibit 3-1
<strong>Exhibit 3-1   The three forces shown act on a particle.  Use this exhibit to answer the following question(s).. Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?</strong> A)27.0 N B)33.2 N C)36.3 N D)23.8 N E)105 N
The three forces shown act on a particle. Use this exhibit to answer the following question(s)..
Refer to Exhibit 3-1.What is the magnitude of the resultant of these three forces?

A)27.0 N
B)33.2 N
C)36.3 N
D)23.8 N
E)105 N
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
49
Exhibit 3-2
 <strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).  -Refer to Exhibit 3-2.The child's displacement is:</strong> A)  2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }  B)  2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }  C)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }  D)  2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }  E)  3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).

-Refer to Exhibit 3-2.The child's displacement is:

A) 2i^+2j^+2k^2 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }
B) 2.8i~+2.8j~+2k~2.8 \tilde { \mathbf { i } } + 2.8 \tilde { \mathbf { j } } + 2 \tilde{ \mathbf { k } }
C) 2i~+2j~+2.8k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 2.8 \tilde{ \mathbf { k } }
D) 2i~+2j~+3.5k~2 \tilde { \mathbf { i } } + 2 \tilde { \mathbf { j } } + 3.5 \tilde{ \mathbf { k } }
E) 3.5i^+3.5j^+3.5k^3.5 \hat { \mathbf { i } } + 3.5 \hat { \mathbf { j } } + 3.5 \hat { \mathbf { k } }
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
50
If vector C\overrightarrow { \mathrm { C } } is added to vector D\overrightarrow { \mathrm { D } } ,the result is a third vector that is perpendicular to D\overrightarrow { \mathrm { D } } and has a magnitude equal to 3 D\overrightarrow { \mathrm { D } } .What is the ratio of the magnitude of C\overrightarrow { \mathrm { C } } to that of D\overrightarrow { \mathrm { D } } ?

A)1.8
B)2.2
C)3.2
D)1.3
E)1.6
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
51
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total distance it travels is</strong> A)1 000 m. B)1 732 m. C)2 000 m. D)6 298 m. E)8 000 m.
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total distance it travels is

A)1 000 m.
B)1 732 m.
C)2 000 m.
D)6 298 m.
E)8 000 m.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
52
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\overrightarrow { \mathbf { B } } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
53
Exhibit 3-2
<strong>Exhibit 3-2   A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s). Refer to Exhibit 3-2.What is the child's distance from her starting position?</strong> A)2.8 m B)3.5 m C)6.0 m D)6.9 m E)12.0 m
A child starts at one corner of a cubical jungle gym in a playground and climbs up to the diagonally opposite corner.The original corner is the coordinate origin,and the x,y and z axes are oriented along the jungle gym edges.The length of each side is 2 m. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-2.What is the child's distance from her starting position?

A)2.8 m
B)3.5 m
C)6.0 m
D)6.9 m
E)12.0 m
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
54
A student decides to spend spring break by driving 50 miles due east,then 50 miles 30 degrees south of east,then 50 miles 30 degrees south of that direction,and to continue to drive 50 miles deviating by 30 degrees each time until he returns to his original position.How far will he drive,and how many vectors must he sum to calculate his displacement?

A)0,0
B)0,8
C)0,12
D)400 mi,8
E)600 mi,12
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
55
Exhibit 3-4
<strong>Exhibit 3-4   The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind.  Use this exhibit to answer the following question(s). Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is</strong> A)1 732 m,East. B)2 000 m,Northeast. C)6 298 m,East. D)8 000 m,Southeast. E)8 000 m,East.
The diagram below shows the path taken by a sailboat tacking sideways because it cannot sail directly into the wind. Use this exhibit to answer the following question(s).
Refer to Exhibit 3-4.The total displacement of the sailboat,the vector sum of its displacements OB,BC,CD and DE,is

A)1 732 m,East.
B)2 000 m,Northeast.
C)6 298 m,East.
D)8 000 m,Southeast.
E)8 000 m,East.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
56
Vectors A\overrightarrow { \mathrm { A } } and B\vec { B } have equal magnitudes.Which statement is always true?

A) A+B=0\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } = 0 .
B) AB=0\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } = 0 .
C) AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } is perpendicular to A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
D) BA\overrightarrow { \mathrm { B } } - \overrightarrow { \mathrm { A } } is perpendicular to AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } .
E)The magnitude of AB\overrightarrow { \mathbf { A } } - \overrightarrow { \mathbf { B } } equals the magnitude of A+B\overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
57
When vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,which has a magnitude of 5.0,the vector representing their sum is perpendicular to A\overrightarrow { \mathrm { A } } and has a magnitude that is twice that of A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.2
B)2.5
C)4.5
D)5.0
E)7.0
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
58
The rectangular coordinates of a point are (5.00,y)and the polar coordinates of this point are (r,67.4°).What is the value of the polar coordinate r in this case?

A)1.92
B)4.62
C)12.0
D)13.0
E)More information is needed.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
59
The vector A\overrightarrow { \mathrm { A } } has components +5 and +7 along the x and y axes respectively.Along a set of axes rotated 90 degrees counterclockwise relative to the original axes,the vector's components are

A)-7;-5.
B)7;-5.
C)-7;5.
D)7;5.
E)7;0.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
60
If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

A)2.0
B)3.0
C)4.0
D)5.0
E)6.0
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
61
What is the mass of air in a room that measures 5.0 m * 8.0 m * 3.0 m? (The density of air is 1/800 that of water).
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
62
A vector starts at coordinate (3.0,4.0)and ends at coordinate (-2.0,16.0).What are the magnitude and direction of this vector?
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
63
The basic function of a carburetor of an automobile is to atomize the gasoline and mix it with air to promote rapid combustion.As an example,assume that 30 cm3 of gasoline is atomized into N spherical droplets,each with a radius of 2.0 *10 - 5 m.What is the total surface area of these N spherical droplets?
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
64
The standard kilogram is a platinum-iridium cylinder 39 mm in height and 39 mm in diameter.What is the density of the material?
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
65
A 2.00 m by 3.00 m plate of aluminum has a mass of 324 kg.What is the thickness of the plate? (The density of aluminum is 2.70 * 103 kg/m3. )
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
66
What two vectors are each the same magnitude as and perpendicular to What two vectors are each the same magnitude as and perpendicular to   ? ?
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
67
A problem may be solved more easily when alternative representations are used.The best strategy is to formulate representations in an order that assists in understanding the physical principles involved.Of the orders given below,the one that will work best most often is

A)pictorial representation,mathematical representation,tabular representation,mental representation.
B)pictorial representation,mental representation,mathematical representation,tabular representation.
C)mathematical representation,pictorial representation,tabular representation,mental representation.
D)mathematical representation,tabular representation,mental representation,pictorial representation.
E)mental representation,pictorial representation,tabular representation,mathematical representation.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
68
In what quadrant are both the sine and tangent negative?

A)1st
B)2nd
C)3rd
D)4th
E)This cannot happen.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
69
Two vectors starting at the same origin have equal and opposite x components.Is it possible for the two vectors to be perpendicular to each other? Justify your answer.
Unlock Deck
Unlock for access to all 69 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 69 flashcards in this deck.