Exam 1: Introduction and Vectors

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

What two vectors are each the same magnitude as and perpendicular to 7i~+24j^7 \tilde { \mathbf { i } } + 24 \hat { \mathbf { j } } ?

Free
(Short Answer)
4.7/5
(40)
Correct Answer:
Verified

24i^+7j^- 24 \hat { \mathbf { i } } + 7 \hat { \mathbf { j } } and 24i^7j^24 \hat { \mathbf { i } } - 7 \hat { \mathbf { j } } .

A rectangle has a length of 1.323 m and a width of 4.16 m.Using significant figure rules,what is the area of this rectangle?

Free
(Multiple Choice)
4.9/5
(41)
Correct Answer:
Verified

D

If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\overrightarrow { \mathbf { B } } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

Free
(Multiple Choice)
4.8/5
(26)
Correct Answer:
Verified

A

Find the average density of a red giant star with a mass of 20 * 1030 kg (approximately 10 solar masses)and a radius of 150 *109 m (equal to the Earth's distance from the sun).

(Multiple Choice)
4.9/5
(39)

The quantity with the same units as force times time,Ft,with dimensions MLT - 1 is

(Multiple Choice)
4.8/5
(34)

Vectors A\overrightarrow { \mathbf { A } } and B\vec { B } are shown.What is the magnitude of a vector C\overrightarrow { \mathrm { C } } if C=AB\overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?  Vectors  \overrightarrow { \mathbf { A } }  and  \vec { B }  are shown.What is the magnitude of a vector  \overrightarrow { \mathrm { C } }  if  \overrightarrow { \mathrm { C } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathrm { B } } ?

(Multiple Choice)
4.8/5
(38)

Which quantity can be converted from the English system to the metric system by the conversion factor 5280fmi12inf2.54 cm1in1 m100 cm1 h3600 s\frac { 5280 \mathrm { f } } { \mathrm { mi } } \cdot \frac { 12 \mathrm { in } } { \mathrm { f } } \cdot \frac { 2.54 \mathrm {~cm} } { 1 \mathrm { in } } \cdot \frac { 1 \mathrm {~m} } { 100 \mathrm {~cm} } \cdot \frac { 1 \mathrm {~h} } { 3600 \mathrm {~s} } ?

(Multiple Choice)
4.9/5
(46)

Dana says any vector R\overrightarrow { \mathrm { R } } can be represented as the sum of two vectors: R=A+B\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } + \overrightarrow { \mathrm { B } } .Ardis says any vector R\overrightarrow { \mathrm { R } } can be represented as the difference of two vectors: R=AB\overrightarrow { \mathbf { R } } = \overrightarrow { \mathrm { A } } - \overrightarrow { \mathbf { B } } .Which one,if either,is correct?

(Multiple Choice)
4.9/5
(31)

Which of the following quantities has the same dimensions as kinetic energy, 12mv2\frac { 1 } { 2 } m v ^ { 2 } ? Note: [a] = [g] = LT - 2;[h] = L and [v] = LT - 1.

(Multiple Choice)
4.9/5
(33)

Two vectors starting at the same origin have equal and opposite x components.Is it possible for the two vectors to be perpendicular to each other? Justify your answer.

(Essay)
4.8/5
(45)

John and Linda are arguing about the definition of density.John says the density of an object is proportional to its mass.Linda says the object's mass is proportional to its density and to its volume.Which one,if either,is correct?

(Multiple Choice)
4.9/5
(35)

Exhibit 3-3 The vectors A\overrightarrow { \mathrm { A } } , B\vec { B } ,and C\overrightarrow { \mathrm { C } } are shown below.  Exhibit 3-3 The vectors  \overrightarrow { \mathrm { A } }  ,  \vec { B }  ,and  \overrightarrow { \mathrm { C } }  are shown below.   Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3.Which diagram below correctly represents  \overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } }  ? Use this exhibit to answer the following question(s). -Refer to Exhibit 3-3.Which diagram below correctly represents A+B+C\overrightarrow { \mathbf { A } } + \overrightarrow { \mathbf { B } } + \overrightarrow { \mathbf { C } } ?

(Multiple Choice)
4.8/5
(35)

The displacement of the tip of the 10 cm long minute hand of a clock between 12:15 A.M.and 12:45 P.M.is:

(Multiple Choice)
4.8/5
(36)

The term 12ρv2\frac { 1 } { 2 } \rho v ^ { 2 } occurs in Bernoulli's equation in Chapter 15,with ρ\rho being the density of a fluid and v its speed.The dimensions of this term are

(Multiple Choice)
4.9/5
(36)

Adding vectors A\overrightarrow { \mathrm { A } } and B\vec { B } by the graphical method gives the same result for A\overrightarrow { \mathrm { A } } + B\vec { B } and B\vec { B } + A\overrightarrow { \mathrm { A } } If both additions are done graphically from the same origin,the resultant is the vector that goes from the tail of the first vector to the tip of the second vector,i.e,it is represented by a diagonal of the parallelogram formed by showing both additions in the same figure.Note that a parallelogram has 2 diagonals.Keara says that the sum of two vectors by the parallelogram method is R=5i^\overrightarrow { \mathbf { R } } = 5 \hat { \mathbf { i } } Shamu says it is R=i^+4j^\overrightarrow { \mathbf { R } } = \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } Both used the parallelogram method,but one used the wrong diagonal.Which one of the vector pairs below contains the original two vectors?

(Multiple Choice)
4.9/5
(37)

Which one of the quantities below has dimensions equal to [MLT2]\left[ \frac { \mathrm { ML } } { \mathrm { T } ^ { 2 } } \right] ?

(Multiple Choice)
4.8/5
(33)

When vector A\overrightarrow { \mathrm { A } } is added to vector B\vec { B } ,which has a magnitude of 5.0,the vector representing their sum is perpendicular to A\overrightarrow { \mathrm { A } } and has a magnitude that is twice that of A\overrightarrow { \mathrm { A } } .What is the magnitude of A\overrightarrow { \mathrm { A } } ?

(Multiple Choice)
4.9/5
(37)

A vector A\overrightarrow { \mathrm { A } } is added to B=6i^8j^\overrightarrow { \mathbf { B } } = 6 \hat { \mathbf { i } } - 8 \hat { \mathbf { j } } .The resultant vector is in the positive x direction and has a magnitude equal to that of A\overrightarrow { \mathrm { A } } .What is the direction of A\overrightarrow { \mathrm { A } } ?

(Multiple Choice)
4.9/5
(38)

Anthony has added the vectors listed below and gotten the result R=9i^+4j^+6k^\overrightarrow { \mathbf { R } } = 9 \hat { \mathbf { i } } + 4 \hat { \mathbf { j } } + 6 \hat { \mathbf { k } } .What errors has he made? A=3i~+4j~5k~\overrightarrow { \mathbf { A } } = 3 \tilde { \mathbf { i } } + 4 \tilde{ \mathbf { j } } - 5 \tilde { \mathbf { k } } B=3i^+2j^+8k^\overrightarrow { \mathbf { B } } = - 3 \hat { \mathbf { i } } + 2 \hat { \mathbf { j } } + 8 \hat { \mathbf { k } } C=3i^2j^+2k^\overrightarrow { \mathbf { C } } = 3 \hat { \mathbf { i } } - 2 \hat { \mathbf { j } } + 2 \hat { \mathbf { k } }

(Multiple Choice)
4.9/5
(40)

If two collinear vectors A\overrightarrow { \mathrm { A } } and B\vec { B } are added,the resultant has a magnitude equal to 4.0.If B\vec { B } is subtracted from A\overrightarrow { \mathrm { A } } ,the resultant has a magnitude equal to 8.0.What is the magnitude of A\overrightarrow { \mathrm { A } } ?

(Multiple Choice)
4.8/5
(29)
Showing 1 - 20 of 69
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)