Deck 5: Integrals

Full screen (f)
exit full mode
Question
Use the Midpoint Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A)16.25
B)0.505
C)5.4167
D)1.5
E)5.625
F)11.25
G)5.3033
H)2.5
Use Space or
up arrow
down arrow
to flip the card.
Question
Use the Midpoint Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 37763465\frac { 3776 } { 3465 }
B) 75523465\frac { 7552 } { 3465 }
C) 18883465\frac { 1888 } { 3465 }
D) 732\frac { 7 } { 32 }
E) 516\frac { 5 } { 16 }
F) 532\frac { 5 } { 32 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Question
Use Simpson's Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 3310\frac { 33 } { 10 }
B) 6610\frac { 66 } { 10 }
C) 1210\frac { 12 } { 10 }
D) 2120\frac { 21 } { 20 }
E) 1110\frac { 11 } { 10 }
F) 2210\frac { 22 } { 10 }
G) 610\frac { 6 } { 10 }
H) 2110\frac { 21 } { 10 }
Question
Estimate Estimate   using the Trapezoidal Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> using the Trapezoidal Rule with n = 4. Then use the error bound Estimate   using the Trapezoidal Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> to estimate the accuracy.
Question
Use Simpson's Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A) 654\frac { 65 } { 4 }
B) 12\frac { 1 } { 2 }
C) 458\frac { 45 } { 8 }
D) 32\frac { 3 } { 2 }
E) 6512\frac { 65 } { 12 }
F) 454\frac { 45 } { 4 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Question
Consider the integral Consider the integral   Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by  <div style=padding-top: 35px> Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by Consider the integral   Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by  <div style=padding-top: 35px>
Question
Use the Trapezoidal Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A) 654\frac { 65 } { 4 }
B) 12\frac { 1 } { 2 }
C) 458\frac { 45 } { 8 }
D) 32\frac { 3 } { 2 }
E) 6512\frac { 65 } { 12 }
F) 454\frac { 45 } { 4 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Question
Use the Trapezoidal Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 6730\frac { 67 } { 30 }
B) 2910\frac { 29 } { 10 }
C) 78\frac { 7 } { 8 }
D) 32\frac { 3 } { 2 }
E) 532\frac { 5 } { 32 }
F) 6760\frac { 67 } { 60 }
G) 716\frac { 7 } { 16 }
H) 34\frac { 3 } { 4 }
Question
Estimate Estimate   using the Midpoint Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> using the Midpoint Rule with n = 4. Then use the error bound Estimate   using the Midpoint Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> to estimate the accuracy.
Question
Use the Midpoint Rule with 2 equal subdivisions to get an approximation for ln 5.
Question
Estimate Estimate   using Simpson's Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> using Simpson's Rule with n = 4. Then use the error bound Estimate   using Simpson's Rule with n = 4. Then use the error bound   to estimate the accuracy.<div style=padding-top: 35px> to estimate the accuracy.
Question
Use the Midpoint Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 14\frac { 1 } { 4 }
B) 12\frac { 1 } { 2 }
C) 732\frac { 7 } { 32 }
D) 32\frac { 3 } { 2 }
E) 516\frac { 5 } { 16 }
F) 532\frac { 5 } { 32 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Question
Suppose using n = 10 to approximate the integral of a certain function by the Trapezoidal Rule results in an upper bound for the error equal to 110\frac { 1 } { 10 } . What will the upper bound become if we change to n = 20?

A) 110,000\frac { 1 } { 10,000 }
B) 1100\frac { 1 } { 100 }
C) 180\frac { 1 } { 80 }
D) 1160\frac { 1 } { 160 }
E) 11000\frac { 1 } { 1000 }
F) 120\frac { 1 } { 20 }
G) 140\frac { 1 } { 40 }
H) 1100,000\frac { 1 } { 100,000 }
Question
Use Simpson's Rule with n = 4 to approximate Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px>
Question
Use the Trapezoidal Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 516\frac { 5 } { 16 }
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 58\frac { 5 } { 8 }
E) 13\frac { 1 } { 3 }
F) 716\frac { 7 } { 16 }
G) 23\frac { 2 } { 3 }
H) 38\frac { 3 } { 8 }
Question
Suppose using n = 10 to approximate the integral of a certain function by Simpson's Rule results in an upper bound for the error equal to 110\frac { 1 } { 10 } . What will the upper bound become if we change to n = 20?

A) 1100\frac { 1 } { 100 }
B) 110,000\frac { 1 } { 10,000 }
C) 140\frac { 1 } { 40 }
D) 11000\frac { 1 } { 1000 }
E) 1160\frac { 1 } { 160 }
F) 120\frac { 1 } { 20 }
G) 1100,000\frac { 1 } { 100,000 }
H) 180\frac { 1 } { 80 }
Question
Use Simpson's Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 58\frac { 5 } { 8 }
B) 13\frac { 1 } { 3 }
C) 38\frac { 3 } { 8 }
D) 23\frac { 2 } { 3 }
E) 716\frac { 7 } { 16 }
F) 14\frac { 1 } { 4 }
G) 916\frac { 9 } { 16 }
H) 12\frac { 1 } { 2 }
Question
Use (a) the Trapezoidal Rule with n = 8 and (b) Simpson's Rule with n = 8 to approximate Use (a) the Trapezoidal Rule with n = 8 and (b) Simpson's Rule with n = 8 to approximate   Round your answers to six decimal places.<div style=padding-top: 35px> Round your answers to six decimal places.
Question
Use Simpson's Rule with n = 6 to approximate Use Simpson's Rule with n = 6 to approximate  <div style=padding-top: 35px>
Question
Use the Trapezoidal Rule with n = 1 to approximate the integral 01(x+2)dx\int _ { 0 } ^ { 1 } ( \sqrt { x } + 2 ) d x

A) 12\frac { 1 } { 2 }
B) 916\frac { 9 } { 16 }
C) 716\frac { 7 } { 16 }
D) 14\frac { 1 } { 4 }
E) 38\frac { 3 } { 8 }
F) 23\frac { 2 } { 3 }
G) 52\frac { 5 } { 2 }
H) 58\frac { 5 } { 8 }
Question
Find the value of the integral 12u21du\int _ { 1 } ^ { 2 } \sqrt { u ^ { 2 } - 1 } d u

A) 3+12ln(43)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 4 - \sqrt { 3 } )
B) 312ln(2+3)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 2 + \sqrt { 3 } )
C) 312ln(4+3)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 4 + \sqrt { 3 } )
D) 3+12ln(23)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 2 - \sqrt { 3 } )
E) 312ln(43)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 4 - \sqrt { 3 } )
F) 3+12ln(4+3)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 4 + \sqrt { 3 } )
G) 3+12ln(2+3)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 2 + \sqrt { 3 } )
H) 312ln(23)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 2 - \sqrt { 3 } )
Question
Two students use Simpson's Rule to estimate Two students use Simpson's Rule to estimate   . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?<div style=padding-top: 35px> . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?
Question
Evaluate 3x+2x1dx\int \frac { 3 x + 2 } { x - 1 } d x

A) 5lnx1+3x+C5 \ln | x - 1 | + 3 x + C
B) 5lnx1+C5 \ln | x - 1 | + C
C) 3lnx1+3x+C3 \ln | x - 1 | + 3 x + C
D) 3x+C3 x + C
E) 3lnx1+5x+C3 \ln | x - 1 | + 5 x + C
F) 5x+C5 x + C
G) 2lnx1+3x+C2 \ln | x - 1 | + 3 x + C
H) 2lnx+C2 \ln | x | + C
Question
Find the value of the integral 0π/4sin2(2x)cos2(2x)dx\int _ { 0 } ^ { \pi / 4 } \sin ^ { 2 } ( 2 x ) \cos ^ { 2 } ( 2 x ) d x

A)1
B) π16\frac { \pi } { 16 }
C) π4\frac { \pi } { 4 }
D)2
E) π32\frac { \pi } { 32 }
F) π8\frac { \pi } { 8 }
G) π64\frac { \pi } { 64 }
H) 16\frac { 1 } { 6 }
Question
Use the Table of Integrals in your textbook to evaluate each of the following:
(a) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (b) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (c) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (d) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (e) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (f) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (g) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (h) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (i) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (j) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px>
Question
Find the partial fraction expansion of the rational function: xx25x+6\frac { x } { x ^ { 2 } - 5 x + 6 } .

A) 3x32x2\frac { 3 } { x - 3 } - \frac { 2 } { x - 2 }
B) 3x3+2x2\frac { 3 } { x - 3 } + \frac { 2 } { x - 2 }
C) 3x+32x2\frac { 3 } { x + 3 } - \frac { 2 } { x - 2 }
D) 3x32x+2\frac { 3 } { x - 3 } - \frac { 2 } { x + 2 }
E) 3x+32x+2\frac { 3 } { x + 3 } - \frac { 2 } { x + 2 }
F) 3x+32x2\frac { - 3 } { x + 3 } - \frac { 2 } { x - 2 }
G) 3x3+2x2\frac { - 3 } { x - 3 } + \frac { 2 } { x - 2 }
H) 3x3+2x2\frac { - 3 } { x - 3 } + \frac { - 2 } { x - 2 }
Question
(a) Estimate (a) Estimate   using Simpson's Rule with n = 4.(b) Estimate the error of the approximation in part (a).(c) How large should we take n to guarantee that the estimate by Simpson's Rule is accurate to within 0.001?<div style=padding-top: 35px> using Simpson's Rule with n = 4.(b) Estimate the error of the approximation in part (a).(c) How large should we take n to guarantee that the estimate by Simpson's Rule is accurate to within 0.001?
Question
The following table shows the speedometer readings of a truck, taken at ten minute intervals during one hour of a trip.Time (min)
0
10
20
30
40
50
60
Speed (mi/h)
40
45
50
60
70
65
60
Use the table and the indicated technique to estimate the distance that the truck traveled in the hour.(a) The Trapezoidal Rule
(b) The Midpoint Rule
(c) Simpson's Rule
Question
Evaluate cosx4+sin2xdx\int \frac { \cos x } { 4 + \sin ^ { 2 } x } d x

A) tan1(sinx2)+C\tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
B) 12tan1(sinx2)+C\frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
C) 12tan1(sinx)+C\frac { 1 } { 2 } \tan ^ { - 1 } ( \sin x ) + C
D) 12tan1(cosx2)+C\frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { \cos x } { 2 } \right) + C
E) 14tan1(sinx2)+C\frac { 1 } { 4 } \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
F) ln(sinx2)+C\ln \left( \frac { \sin x } { 2 } \right) + C
G) 2tan1(sinx2)+C2 \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
H) 12ln(sinx2)+C\frac { 1 } { 2 } \ln \left( \frac { \sin x } { 2 } \right) + C
Question
Below is a table of values for a continuous function f. Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> 0
0.5
1 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> 2.0
1.5 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> 0.5 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> (a) Use the Trapezoidal Rule with n = 4 to approximate Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px> (b) Use Simpson's Rule with n = 4 to approximate Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  <div style=padding-top: 35px>
Question
Use the Table of Integrals in your textbook to evaluate each of the following:
(a) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (b) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (c) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (d) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (e) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (f) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (g) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (h) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (i) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px> (j) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  <div style=padding-top: 35px>
Question
Find the value of the integral 0x/12sin2udu\int _ { 0 } ^ { x / 12 } \sin ^ { 2 } u d u

A) π318\frac { \pi - 3 } { 18 }
B) π316\frac { \pi - 3 } { 16 }
C) π324\frac { \pi - 3 } { 24 }
D) π372\frac { \pi - 3 } { 72 }
E) π336\frac { \pi - 3 } { 36 }
F) π312\frac { \pi - 3 } { 12 }
G) π348\frac { \pi - 3 } { 48 }
H) π360\frac { \pi - 3 } { 60 }
Question
Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?<div style=padding-top: 35px> Use the graph of p (x) graphed below to answer the questions which follow: Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?<div style=padding-top: 35px> (a) Use Simpson's Rule with n = 4 to approximate Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?<div style=padding-top: 35px> (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?<div style=padding-top: 35px> What is the approximate value of Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?<div style=padding-top: 35px> (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?
Question
Find the value of the integral 0x/6sinxcos3xdx\int _ { 0 } ^ { x / 6 } \frac { \sin x } { \cos ^ { 3 } x } d x

A)1
B) 23- \frac { 2 } { 3 }
C) 23\frac { 2 } { 3 }
D)2
E) 13\frac { 1 } { 3 }
F) 13- \frac { 1 } { 3 }
G) 16\frac { 1 } { 6 }
H) 16- \frac { 1 } { 6 }
Question
Find the value of the integral 011u2du\int _ { 0 } ^ { 1 } \sqrt { 1 - u ^ { 2 } } d u

A)2
B)1
C) π4\frac { \pi } { 4 }
D) 14\frac { 1 } { 4 }
E) 12\frac { 1 } { 2 }
F) π\pi
G) π2\frac { \pi } { 2 }
H) 2π2 \pi
Question
Find the value of the integral 0x/2cos3xdx\int _ { 0 } ^ { x / 2 } \cos ^ { 3 } x d x

A)1
B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D)2
E)3
F) π2\frac { \pi } { 2 }
G) 16\frac { 1 } { 6 }
H) π2π324\frac { \pi } { 2 } - \frac { \pi ^ { 3 } } { 24 }
Question
Two students use Simpson's Rule to estimate Two students use Simpson's Rule to estimate   . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?<div style=padding-top: 35px> . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?
Question
The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use Simpson's Rule to estimate the area of the pool. The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use Simpson's Rule to estimate the area of the pool.  <div style=padding-top: 35px>
Question
A scientist collects the following data and plots it in the coordinate plane. A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001?<div style=padding-top: 35px> 2
2.5
3
3.5
4
4.5
5 A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001?<div style=padding-top: 35px> 4
10
8
6
14
10
12
(a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001?<div style=padding-top: 35px> for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001?<div style=padding-top: 35px> (Simpson's Rule) to the integral is accurate to within 0.001?
Question
Find the value of the integral 0x/8sin2(4x)dx\int _ { 0 } ^ { x / 8 } \sin ^ { 2 } ( 4 x ) d x

A)1
B) π16\frac { \pi } { 16 }
C) π3\frac { \pi } { 3 }
D)2
E) π32\frac { \pi } { 32 }
F) π8\frac { \pi } { 8 }
G) π6\frac { \pi } { 6 }
H) 16\frac { 1 } { 6 }
Question
Find the value of the integral 0x/2excosxdx\int _ { 0 } ^ { x / 2 } e ^ { x } \cos x d x

A) es/4+12\frac { e ^ { s / 4 } + 1 } { 2 }

B) es/2+12\frac { e ^ { s / 2 } + 1 } { 2 }
C) π2\frac { \pi } { 2 }
D) ex/214\frac { e ^ { x / 2 } - 1 } { 4 }
E)2

F) ex/412\frac { e ^ { x / 4 } - 1 } { 2 }
11
G) ex/2+14\frac { e ^ { x / 2 } + 1 } { 4 }

H) ex/212\frac { e ^ { x / 2 } - 1 } { 2 }
Question
Find the value of the integral 1elnxdx\int _ { 1 } ^ { e } \ln x d x

A) e2e ^ { 2 }
B) ee
C)2
D) e2ee ^ { 2 } - e
E) e2e - 2
F)1
G) e1e - 1
H) e12\frac { e - 1 } { 2 }
Question
Find the value of the integral 0xxcosxdx\int _ { 0 } ^ { x } x \cos x d x

A) 2- 2
B) 2π22 \pi - 2
C) π2\frac { \pi } { 2 }
D)4
E)2
F) π\pi
G) 2π2 \pi
H) 4- 4
Question
Find the value of the integral 0x/2x2sinxdx\int _ { 0 } ^ { x / 2 } x ^ { 2 } \sin x d x

A) π2\pi - 2

B) π24\frac { \pi - 2 } { 4 }
C) π22\frac { \pi - 2 } { 2 }
D)1
E) 2π2 - \pi
F) 2π4\frac { 2 - \pi } { 4 }

G) 2π2\frac { 2 - \pi } { 2 }

H)0
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the partial fraction expansion of the rational function: 9(x+1)2(2x)\frac { 9 } { ( x + 1 ) ^ { 2 } ( 2 - x ) } .

A) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } + \frac { - 1 } { x - 2 }
B) 1x+11x2\frac { 1 } { x + 1 } - \frac { 1 } { x - 2 }
C) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { - 3 } { ( x + 1 ) ^ { 2 } } + \frac { - 1 } { x - 2 }
D) 3(x+1)21x2\frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
E) 1x+1+3(x+1)2+1x2\frac { 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } + \frac { 1 } { x - 2 }
F) 1x+13(x+1)21x2\frac { 1 } { x + 1 } - \frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
G) 1x+1+3(x+1)21x2\frac { 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
H) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { - 3 } { ( x + 1 ) ^ { 2 } } + \frac { 1 } { x - 2 }
Question
Find the value of the integral 14lnxx2dx\int _ { 1 } ^ { 4 } \frac { \ln x } { x ^ { 2 } } d x

A) θ\theta

B) 2e12 e - 1
C) 32ln2\frac { 3 } { 2 } - \ln 2
D) 12ln22\frac { 1 } { 2 } - \frac { \ln 2 } { 2 }
E) e2e - 2
F) e1e - 1

G) 34ln22\frac { 3 } { 4 } - \frac { \ln 2 } { 2 }

H) 1ln21 - \ln 2
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the value of the integral 01t(2t1)4dt\int _ { 0 } ^ { 1 } t ( 2 t - 1 ) ^ { 4 } d t

A) 13\frac { 1 } { 3 }

B) 14\frac { 1 } { 4 }
C) 15\frac { 1 } { 5 }
D)1
E) 12\frac { 1 } { 2 }
F) 110\frac { 1 } { 10 }

G) 120\frac { 1 } { 20 }

H)0
Question
Find the value of the integral 01xtan1xdx\int _ { 0 } ^ { 1 } x \tan ^ { - 1 } x d x

A) π4\frac { \pi } { 4 }

B) π2\pi - 2
C) π2\frac { \pi } { 2 }
D) π22\frac { \pi - 2 } { 2 }
E) π24\frac { \pi - 2 } { 4 }
F) π1\pi - 1

G) π12\frac { \pi - 1 } { 2 }

H) π14\frac { \pi - 1 } { 4 }
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the partial fraction expansion of the rational function: x2(x1)(x2+1)\frac { x ^ { 2 } } { ( x - 1 ) \left( x ^ { 2 } + 1 \right) } .

A) 12(x1)+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { 1 } { 2 \left( x ^ { 2 } + 1 \right) }
B) 12(x1)+x2(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { x } { 2 \left( x ^ { 2 } + 1 \right) }
C) 1(x1)+x+1(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { x + 1 } { \left( x ^ { 2 } + 1 \right) }
D) 1(x1)+1(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { 1 } { \left( x ^ { 2 } + 1 \right) }
E) 12(x1)+x+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
F) 12(x1)+x+12(x2+1)\frac { - 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
G) 1(x1)+x(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { x } { \left( x ^ { 2 } + 1 \right) }
H) 12(x1)x+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } - \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
Question
Evaluate 1x24dx\int \frac { 1 } { x ^ { 2 } - 4 } d x

A) 14lnx+2x2+C\frac { 1 } { 4 } \ln \left| \frac { x + 2 } { x - 2 } \right| + C
B) lnx24+C\ln \left| x ^ { 2 } - 4 \right| + C
C) 4lnx+2x2+C4 \ln \left| \frac { x + 2 } { x - 2 } \right| + C
D) 14lnx2x+2+C\frac { 1 } { 4 } \ln \left| \frac { x - 2 } { x + 2 } \right| + C
E) 12lnx+2x2+C\frac { 1 } { 2 } \ln \left| \frac { x + 2 } { x - 2 } \right| + C
F) 14lnx24+C\frac { 1 } { 4 } \ln \left| x ^ { 2 } - 4 \right| + C
G) 12lnx2x+2+C\frac { 1 } { 2 } \ln \left| \frac { x - 2 } { x + 2 } \right| + C
H) 1x4x+C- \frac { 1 } { x } - 4 x + C
Question
Find the value of the integral 01arcsintdt\int _ { 0 } ^ { 1 } \arcsin t d t

A) π2\pi - 2

B) π24\frac { \pi - 2 } { 4 }
C) π22\frac { \pi - 2 } { 2 }
D)1
E) 2π2 - \pi
F) 2π4\frac { 2 - \pi } { 4 }

G) 2π2\frac { 2 - \pi } { 2 }
H)0
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the value of the integral 01ln(1+x2)dx\int _ { 0 } ^ { 1 } \ln \left( 1 + x ^ { 2 } \right) d x

A) ln2\ln 2

B) π8\frac { \pi } { 8 }
C) π22+ln2\frac { \pi } { 2 } - 2 + \ln 2
D) 2ln22 - \ln 2
E) π4+ln2\frac { \pi } { 4 } + \ln 2
F) π4\pi - 4

G) π2\pi - 2

H) πln2\pi - \ln 2
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the value of the integral 01xexdx.\int _ { 0 } ^ { 1 } x e ^ { x } d x .

A)2
B) e2ee ^ { 2 } - e
C)1
D) e2e ^ { 2 }
E) ee
F) e1e - 1
G) e2e - 2
H) e12\frac { e - 1 } { 2 }
Question
Evaluate the integral cosxdx\int \cos \sqrt { x } d x

A) 2sinx+C2 \sin \sqrt { x } + C

B) 2xcosx+C2 \sqrt { x } \cos \sqrt { x } + C
C) x(cosx+sinx)+C\sqrt { x } ( \cos \sqrt { x } + \sin \sqrt { x } ) + C
D) cosx+sinxx+C\frac { \cos \sqrt { x } + \sin \sqrt { x } } { \sqrt { x } } + C
E) 2(xsinx+cosx)+C2 ( \sqrt { x } \sin \sqrt { x } + \cos \sqrt { x } ) + C
F) 2(xcosx+sinx)+C2 ( \sqrt { x } \cos \sqrt { x } + \sin \sqrt { x } ) + C

G) xcosx+sinxx+C\sqrt { x } \cos \sqrt { x } + \frac { \sin \sqrt { x } } { \sqrt { x } } + C

H) xsinx+cosxx+C\sqrt { x } \sin \sqrt { x } + \frac { \cos \sqrt { x } } { \sqrt { x } } + C
Question
Find the value of ee2(lnx)2xdx\int _ { e } ^ { e ^ { 2 } } \frac { ( \ln x ) ^ { 2 } } { x } d x

A) ln2\ln 2
B) 12ln2\frac { 1 } { 2 } \ln 2
C) 12\frac { 1 } { 2 }
D) 32\frac { 3 } { 2 }
E)1

F) 1/(ln2)1 / ( \ln 2 )

G)0
H)
73\frac { 7 } { 3 }
Question
Find the value of the integral 0x/2sin(2t)dt\int _ { 0 } ^ { x / 2 } \sin ( 2 t ) d t

A).0
B)1
C) 32\frac { \sqrt { 3 } } { 2 }
D) π2\frac { \pi } { 2 }
E) 24\frac { \sqrt { 2 } } { 4 }
F)2
G) 22\frac { \sqrt { 2 } } { 2 }

H) 12\frac { 1 } { 2 }


Question
Determine a reduction formula for Determine a reduction formula for  <div style=padding-top: 35px>
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the value of the integral 0x/3secxtanx(1+secx)dx\int _ { 0 } ^ { x / 3 } \sec x \tan x ( 1 + \sec x ) d x

A)4
B) 52\frac { 5 } { 2 }
C)3
D) 112\frac { 11 } { 2 }
E) 92\frac { 9 } { 2 }
F)2
G) 72\frac { 7 } { 2 }
H)5
Question
Find the value of the integral 0x/4sin2xcosxdx\int _ { 0 } ^ { x / 4 } \sin ^ { 2 } x \cos x d x

A) 218\frac { \sqrt { 2 } } { 18 }

B) π4\frac { \pi } { 4 }
C) 3π2\frac { 3 \pi } { 2 }
D) 212\frac { \sqrt { 2 } } { 12 }
E) 26\frac { \sqrt { 2 } } { 6 }
F) 29\frac { \sqrt { 2 } } { 9 }

G) 2π3\frac { 2 \pi } { 3 }

H) π2\frac { \pi } { 2 }
Question
(a) Use integration by parts to prove the reduction formula: (a) Use integration by parts to prove the reduction formula:   (b) Demonstrate your understanding of this formula by using it to evaluate:  <div style=padding-top: 35px> (b) Demonstrate your understanding of this formula by using it to evaluate: (a) Use integration by parts to prove the reduction formula:   (b) Demonstrate your understanding of this formula by using it to evaluate:  <div style=padding-top: 35px>
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Find the value of the integral 01x2(x3+1)2dx\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \left( x ^ { 3 } + 1 \right) ^ { 2 } } d x

A) 34\frac { 3 } { 4 }
B)2
C) 37\frac { 3 } { 7 }
D)
73\frac { 7 } { 3 }
E) 16\frac { 1 } { 6 }
F) 32\frac { 3 } { 2 }
G) 23\frac { 2 } { 3 }
H)1
Question
Find the value of the integral 0x/2cosxsin(sinx)dx\int _ { 0 } ^ { x / 2 } \cos x \sin ( \sin x ) d x

A) π2\frac { \pi } { 2 }

B) 1π41 - \frac { \pi } { 4 }
C)sin 1
D)1 - cos 1
E) π2sin1\frac { \pi } { 2 } - \sin 1
F) π4+cos1\frac { \pi } { 4 } + \cos 1
G) 1+3π41 + \frac { 3 \pi } { 4 }
H)1 + tan 1
Question
Evaluate the integral 1+lnxxlnxdx\int \frac { 1 + \ln x } { x \ln x } d x

A) lnx+C\ln x + C

B) lnlnx+C\ln \ln x + C
C) x+lnx+Cx + \ln x + C
D) lnx+lnlnx+C\ln x + \ln \ln x + C
E) xlnx+C\frac { x } { \ln x } + C
F) lnx(x+lnx)+C\frac { \ln x } { ( x + \ln x ) } + C

G) xlnx+Cx \ln x + C

H) xlnlnx+Cx \ln \ln x + C
Question
Find the value of the integral 01(x3+1)5x2dx\int _ { 0 } ^ { 1 } \left( x ^ { 3 } + 1 \right) ^ { 5 } x ^ { 2 } d x

A)0
B)1
C) 212\frac { 21 } { 2 }

D) 329\frac { 32 } { 9 }
E) 323\frac { 32 } { 3 }
F)2
G) 72\frac { 7 } { 2 }
H) 32\frac { 3 } { 2 }


Question
Find the value of eedxxlnx\int _ { e } ^ { e } \frac { d x } { x \sqrt { \ln x } }

A)0
B)1
C)2
D)3
E)4
F)5
G)6
H)7
Question
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px> (d) Evaluate the following integrals: (a)   (b)   (c)   (d)  <div style=padding-top: 35px>
Question
Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   .<div style=padding-top: 35px> (3) = Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   .<div style=padding-top: 35px> . Determine the value of Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   .<div style=padding-top: 35px> .
Question
Find the value of the integral 141(1+x)21xdx\int _ { 1 } ^ { 4 } \frac { 1 } { ( 1 + \sqrt { x } ) ^ { 2 } } \frac { 1 } { \sqrt { x } } d x

A) 65\frac { 6 } { 5 }

B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D) 52\frac { 5 } { 2 }
E) 49\frac { 4 } { 9 }
F) 32\frac { 3 } { 2 }

G) 56\frac { 5 } { 6 }

H) 16\frac { 1 } { 6 }
Question
Find the value of the integral 33x1+3x2dx\int _ { - 3 } ^ { 3 } \frac { x } { \sqrt { 1 + 3 x ^ { 2 } } } d x

A) 23(71)\frac { 2 } { 3 } ( \sqrt { 7 } - 1 )

B) 71\sqrt { 7 } - 1
C)0
D) 13\frac { 1 } { 3 }
E) 23\frac { 2 } { 3 }
F) 17\frac { 1 } { \sqrt { 7 } }
G) 7\sqrt { 7 }
H)Does not exist
Question
Evaluate cos(lnx)dx\int \cos ( \ln x ) d x

A) sin(lnx)+C\sin ( \ln x ) + C

B) x22[cos(lnx)+sin(lnx)]+C\frac { x ^ { 2 } } { 2 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
C) cos(1x)+C\cos \left( \frac { 1 } { x } \right) + C
D) x4[cos(lnx)+sin(lnx)]+C\frac { x } { 4 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
E) sinxx+C\frac { \sin x } { x } + C
F) x[cos(lnx)+sin(lnx)]+Cx [ \cos ( \ln x ) + \sin ( \ln x ) ] + C

G) sin(1x)+C- \sin \left( \frac { 1 } { x } \right) + C

H) x2[cos(lnx)+sin(lnx)]+C\frac { x } { 2 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/239
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 5: Integrals
1
Use the Midpoint Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A)16.25
B)0.505
C)5.4167
D)1.5
E)5.625
F)11.25
G)5.3033
H)2.5
5.3033
2
Use the Midpoint Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 37763465\frac { 3776 } { 3465 }
B) 75523465\frac { 7552 } { 3465 }
C) 18883465\frac { 1888 } { 3465 }
D) 732\frac { 7 } { 32 }
E) 516\frac { 5 } { 16 }
F) 532\frac { 5 } { 32 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
37763465\frac { 3776 } { 3465 }
3
Use Simpson's Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 3310\frac { 33 } { 10 }
B) 6610\frac { 66 } { 10 }
C) 1210\frac { 12 } { 10 }
D) 2120\frac { 21 } { 20 }
E) 1110\frac { 11 } { 10 }
F) 2210\frac { 22 } { 10 }
G) 610\frac { 6 } { 10 }
H) 2110\frac { 21 } { 10 }
1110\frac { 11 } { 10 }
4
Estimate Estimate   using the Trapezoidal Rule with n = 4. Then use the error bound   to estimate the accuracy. using the Trapezoidal Rule with n = 4. Then use the error bound Estimate   using the Trapezoidal Rule with n = 4. Then use the error bound   to estimate the accuracy. to estimate the accuracy.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
5
Use Simpson's Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A) 654\frac { 65 } { 4 }
B) 12\frac { 1 } { 2 }
C) 458\frac { 45 } { 8 }
D) 32\frac { 3 } { 2 }
E) 6512\frac { 65 } { 12 }
F) 454\frac { 45 } { 4 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
6
Consider the integral Consider the integral   Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by  Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by Consider the integral   Approximating it by the Midpoint Rule with n equal subintervals, give an estimate for n which guarantees that the error is bounded by
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
7
Use the Trapezoidal Rule with n = 4 to approximate the integral 222xdx\int _ { - 2 } ^ { 2 } 2 ^ { x } d x

A) 654\frac { 65 } { 4 }
B) 12\frac { 1 } { 2 }
C) 458\frac { 45 } { 8 }
D) 32\frac { 3 } { 2 }
E) 6512\frac { 65 } { 12 }
F) 454\frac { 45 } { 4 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
8
Use the Trapezoidal Rule with n = 4 to approximate the integral 131xdx\int _ { 1 } ^ { 3 } \frac { 1 } { x } d x

A) 6730\frac { 67 } { 30 }
B) 2910\frac { 29 } { 10 }
C) 78\frac { 7 } { 8 }
D) 32\frac { 3 } { 2 }
E) 532\frac { 5 } { 32 }
F) 6760\frac { 67 } { 60 }
G) 716\frac { 7 } { 16 }
H) 34\frac { 3 } { 4 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
9
Estimate Estimate   using the Midpoint Rule with n = 4. Then use the error bound   to estimate the accuracy. using the Midpoint Rule with n = 4. Then use the error bound Estimate   using the Midpoint Rule with n = 4. Then use the error bound   to estimate the accuracy. to estimate the accuracy.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
10
Use the Midpoint Rule with 2 equal subdivisions to get an approximation for ln 5.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
11
Estimate Estimate   using Simpson's Rule with n = 4. Then use the error bound   to estimate the accuracy. using Simpson's Rule with n = 4. Then use the error bound Estimate   using Simpson's Rule with n = 4. Then use the error bound   to estimate the accuracy. to estimate the accuracy.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
12
Use the Midpoint Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 14\frac { 1 } { 4 }
B) 12\frac { 1 } { 2 }
C) 732\frac { 7 } { 32 }
D) 32\frac { 3 } { 2 }
E) 516\frac { 5 } { 16 }
F) 532\frac { 5 } { 32 }
G) 716\frac { 7 } { 16 }
H) 52\frac { 5 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
13
Suppose using n = 10 to approximate the integral of a certain function by the Trapezoidal Rule results in an upper bound for the error equal to 110\frac { 1 } { 10 } . What will the upper bound become if we change to n = 20?

A) 110,000\frac { 1 } { 10,000 }
B) 1100\frac { 1 } { 100 }
C) 180\frac { 1 } { 80 }
D) 1160\frac { 1 } { 160 }
E) 11000\frac { 1 } { 1000 }
F) 120\frac { 1 } { 20 }
G) 140\frac { 1 } { 40 }
H) 1100,000\frac { 1 } { 100,000 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
14
Use Simpson's Rule with n = 4 to approximate Use Simpson's Rule with n = 4 to approximate
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
15
Use the Trapezoidal Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 516\frac { 5 } { 16 }
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 58\frac { 5 } { 8 }
E) 13\frac { 1 } { 3 }
F) 716\frac { 7 } { 16 }
G) 23\frac { 2 } { 3 }
H) 38\frac { 3 } { 8 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
16
Suppose using n = 10 to approximate the integral of a certain function by Simpson's Rule results in an upper bound for the error equal to 110\frac { 1 } { 10 } . What will the upper bound become if we change to n = 20?

A) 1100\frac { 1 } { 100 }
B) 110,000\frac { 1 } { 10,000 }
C) 140\frac { 1 } { 40 }
D) 11000\frac { 1 } { 1000 }
E) 1160\frac { 1 } { 160 }
F) 120\frac { 1 } { 20 }
G) 1100,000\frac { 1 } { 100,000 }
H) 180\frac { 1 } { 80 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
17
Use Simpson's Rule with n = 2 to approximate the integral 01x3dx\int _ { 0 } ^ { 1 } x ^ { 3 } d x

A) 58\frac { 5 } { 8 }
B) 13\frac { 1 } { 3 }
C) 38\frac { 3 } { 8 }
D) 23\frac { 2 } { 3 }
E) 716\frac { 7 } { 16 }
F) 14\frac { 1 } { 4 }
G) 916\frac { 9 } { 16 }
H) 12\frac { 1 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
18
Use (a) the Trapezoidal Rule with n = 8 and (b) Simpson's Rule with n = 8 to approximate Use (a) the Trapezoidal Rule with n = 8 and (b) Simpson's Rule with n = 8 to approximate   Round your answers to six decimal places. Round your answers to six decimal places.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
19
Use Simpson's Rule with n = 6 to approximate Use Simpson's Rule with n = 6 to approximate
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
20
Use the Trapezoidal Rule with n = 1 to approximate the integral 01(x+2)dx\int _ { 0 } ^ { 1 } ( \sqrt { x } + 2 ) d x

A) 12\frac { 1 } { 2 }
B) 916\frac { 9 } { 16 }
C) 716\frac { 7 } { 16 }
D) 14\frac { 1 } { 4 }
E) 38\frac { 3 } { 8 }
F) 23\frac { 2 } { 3 }
G) 52\frac { 5 } { 2 }
H) 58\frac { 5 } { 8 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
21
Find the value of the integral 12u21du\int _ { 1 } ^ { 2 } \sqrt { u ^ { 2 } - 1 } d u

A) 3+12ln(43)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 4 - \sqrt { 3 } )
B) 312ln(2+3)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 2 + \sqrt { 3 } )
C) 312ln(4+3)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 4 + \sqrt { 3 } )
D) 3+12ln(23)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 2 - \sqrt { 3 } )
E) 312ln(43)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 4 - \sqrt { 3 } )
F) 3+12ln(4+3)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 4 + \sqrt { 3 } )
G) 3+12ln(2+3)\sqrt { 3 } + \frac { 1 } { 2 } \ln ( 2 + \sqrt { 3 } )
H) 312ln(23)\sqrt { 3 } - \frac { 1 } { 2 } \ln ( 2 - \sqrt { 3 } )
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
22
Two students use Simpson's Rule to estimate Two students use Simpson's Rule to estimate   . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare? . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
23
Evaluate 3x+2x1dx\int \frac { 3 x + 2 } { x - 1 } d x

A) 5lnx1+3x+C5 \ln | x - 1 | + 3 x + C
B) 5lnx1+C5 \ln | x - 1 | + C
C) 3lnx1+3x+C3 \ln | x - 1 | + 3 x + C
D) 3x+C3 x + C
E) 3lnx1+5x+C3 \ln | x - 1 | + 5 x + C
F) 5x+C5 x + C
G) 2lnx1+3x+C2 \ln | x - 1 | + 3 x + C
H) 2lnx+C2 \ln | x | + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
24
Find the value of the integral 0π/4sin2(2x)cos2(2x)dx\int _ { 0 } ^ { \pi / 4 } \sin ^ { 2 } ( 2 x ) \cos ^ { 2 } ( 2 x ) d x

A)1
B) π16\frac { \pi } { 16 }
C) π4\frac { \pi } { 4 }
D)2
E) π32\frac { \pi } { 32 }
F) π8\frac { \pi } { 8 }
G) π64\frac { \pi } { 64 }
H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
25
Use the Table of Integrals in your textbook to evaluate each of the following:
(a) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (b) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (c) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (d) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (e) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (f) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (g) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (h) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (i) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (j) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
26
Find the partial fraction expansion of the rational function: xx25x+6\frac { x } { x ^ { 2 } - 5 x + 6 } .

A) 3x32x2\frac { 3 } { x - 3 } - \frac { 2 } { x - 2 }
B) 3x3+2x2\frac { 3 } { x - 3 } + \frac { 2 } { x - 2 }
C) 3x+32x2\frac { 3 } { x + 3 } - \frac { 2 } { x - 2 }
D) 3x32x+2\frac { 3 } { x - 3 } - \frac { 2 } { x + 2 }
E) 3x+32x+2\frac { 3 } { x + 3 } - \frac { 2 } { x + 2 }
F) 3x+32x2\frac { - 3 } { x + 3 } - \frac { 2 } { x - 2 }
G) 3x3+2x2\frac { - 3 } { x - 3 } + \frac { 2 } { x - 2 }
H) 3x3+2x2\frac { - 3 } { x - 3 } + \frac { - 2 } { x - 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
27
(a) Estimate (a) Estimate   using Simpson's Rule with n = 4.(b) Estimate the error of the approximation in part (a).(c) How large should we take n to guarantee that the estimate by Simpson's Rule is accurate to within 0.001? using Simpson's Rule with n = 4.(b) Estimate the error of the approximation in part (a).(c) How large should we take n to guarantee that the estimate by Simpson's Rule is accurate to within 0.001?
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
28
The following table shows the speedometer readings of a truck, taken at ten minute intervals during one hour of a trip.Time (min)
0
10
20
30
40
50
60
Speed (mi/h)
40
45
50
60
70
65
60
Use the table and the indicated technique to estimate the distance that the truck traveled in the hour.(a) The Trapezoidal Rule
(b) The Midpoint Rule
(c) Simpson's Rule
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate cosx4+sin2xdx\int \frac { \cos x } { 4 + \sin ^ { 2 } x } d x

A) tan1(sinx2)+C\tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
B) 12tan1(sinx2)+C\frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
C) 12tan1(sinx)+C\frac { 1 } { 2 } \tan ^ { - 1 } ( \sin x ) + C
D) 12tan1(cosx2)+C\frac { 1 } { 2 } \tan ^ { - 1 } \left( \frac { \cos x } { 2 } \right) + C
E) 14tan1(sinx2)+C\frac { 1 } { 4 } \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
F) ln(sinx2)+C\ln \left( \frac { \sin x } { 2 } \right) + C
G) 2tan1(sinx2)+C2 \tan ^ { - 1 } \left( \frac { \sin x } { 2 } \right) + C
H) 12ln(sinx2)+C\frac { 1 } { 2 } \ln \left( \frac { \sin x } { 2 } \right) + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
30
Below is a table of values for a continuous function f. Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  0
0.5
1 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  2.0
1.5 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  0.5 Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  (a) Use the Trapezoidal Rule with n = 4 to approximate Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate  (b) Use Simpson's Rule with n = 4 to approximate Below is a table of values for a continuous function f.       0 0.5 1   2.0 1.5   0.5   (a) Use the Trapezoidal Rule with n = 4 to approximate   (b) Use Simpson's Rule with n = 4 to approximate
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
31
Use the Table of Integrals in your textbook to evaluate each of the following:
(a) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (b) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (c) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (d) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (e) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (f) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (g) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (h) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (i) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)  (j) Use the Table of Integrals in your textbook to evaluate each of the following: (a)   (b)   (c)   (d)   (e)   (f)   (g)   (h)   (i)   (j)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
32
Find the value of the integral 0x/12sin2udu\int _ { 0 } ^ { x / 12 } \sin ^ { 2 } u d u

A) π318\frac { \pi - 3 } { 18 }
B) π316\frac { \pi - 3 } { 16 }
C) π324\frac { \pi - 3 } { 24 }
D) π372\frac { \pi - 3 } { 72 }
E) π336\frac { \pi - 3 } { 36 }
F) π312\frac { \pi - 3 } { 12 }
G) π348\frac { \pi - 3 } { 48 }
H) π360\frac { \pi - 3 } { 60 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
33
Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120? Use the graph of p (x) graphed below to answer the questions which follow: Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120? (a) Use Simpson's Rule with n = 4 to approximate Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120? (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120? What is the approximate value of Intelligence Quotient (IQ) scores are assumed to be normally distributed in the population. The probability that a person selected at random from the general population will have an IQ between 100 and 120 is given by   Use the graph of p (x) graphed below to answer the questions which follow:   (a) Use Simpson's Rule with n = 4 to approximate   (b) The probability that a person selected from the general population will have an IQ score between 80 and 120 is given by   What is the approximate value of   (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120? (c) Since p (x) represents a probability distribution, the entire area of the region under the graph is exactly 1. Using this information, what is the approximate probability that a person selected at random from the general population will have an IQ score over 120?
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
34
Find the value of the integral 0x/6sinxcos3xdx\int _ { 0 } ^ { x / 6 } \frac { \sin x } { \cos ^ { 3 } x } d x

A)1
B) 23- \frac { 2 } { 3 }
C) 23\frac { 2 } { 3 }
D)2
E) 13\frac { 1 } { 3 }
F) 13- \frac { 1 } { 3 }
G) 16\frac { 1 } { 6 }
H) 16- \frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
35
Find the value of the integral 011u2du\int _ { 0 } ^ { 1 } \sqrt { 1 - u ^ { 2 } } d u

A)2
B)1
C) π4\frac { \pi } { 4 }
D) 14\frac { 1 } { 4 }
E) 12\frac { 1 } { 2 }
F) π\pi
G) π2\frac { \pi } { 2 }
H) 2π2 \pi
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
36
Find the value of the integral 0x/2cos3xdx\int _ { 0 } ^ { x / 2 } \cos ^ { 3 } x d x

A)1
B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D)2
E)3
F) π2\frac { \pi } { 2 }
G) 16\frac { 1 } { 6 }
H) π2π324\frac { \pi } { 2 } - \frac { \pi ^ { 3 } } { 24 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
37
Two students use Simpson's Rule to estimate Two students use Simpson's Rule to estimate   . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare? . One divides the interval into 30 equal subintervals and the other into 60 equal subintervals. How will the accuracy of their estimates compare?
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
38
The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use Simpson's Rule to estimate the area of the pool. The widths (in meters) of a kidney-shaped swimming pool were measured at 2-meter intervals as indicated in the figure. Use Simpson's Rule to estimate the area of the pool.
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
39
A scientist collects the following data and plots it in the coordinate plane. A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001? 2
2.5
3
3.5
4
4.5
5 A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001? 4
10
8
6
14
10
12
(a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001? for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation A scientist collects the following data and plots it in the coordinate plane.   2 2.5 3 3.5 4 4.5 5   4 10 8 6 14 10 12 (a) Use Simpson's rule with n = 6 to estimate the area under the graph of a continuous function drawn through these points.(b) If it is known that   for all x, estimate the error involved in the approximation in part (a).(c) How large do we have to choose n so that the approximation   (Simpson's Rule) to the integral is accurate to within 0.001? (Simpson's Rule) to the integral is accurate to within 0.001?
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
40
Find the value of the integral 0x/8sin2(4x)dx\int _ { 0 } ^ { x / 8 } \sin ^ { 2 } ( 4 x ) d x

A)1
B) π16\frac { \pi } { 16 }
C) π3\frac { \pi } { 3 }
D)2
E) π32\frac { \pi } { 32 }
F) π8\frac { \pi } { 8 }
G) π6\frac { \pi } { 6 }
H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
41
Find the value of the integral 0x/2excosxdx\int _ { 0 } ^ { x / 2 } e ^ { x } \cos x d x

A) es/4+12\frac { e ^ { s / 4 } + 1 } { 2 }

B) es/2+12\frac { e ^ { s / 2 } + 1 } { 2 }
C) π2\frac { \pi } { 2 }
D) ex/214\frac { e ^ { x / 2 } - 1 } { 4 }
E)2

F) ex/412\frac { e ^ { x / 4 } - 1 } { 2 }
11
G) ex/2+14\frac { e ^ { x / 2 } + 1 } { 4 }

H) ex/212\frac { e ^ { x / 2 } - 1 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
42
Find the value of the integral 1elnxdx\int _ { 1 } ^ { e } \ln x d x

A) e2e ^ { 2 }
B) ee
C)2
D) e2ee ^ { 2 } - e
E) e2e - 2
F)1
G) e1e - 1
H) e12\frac { e - 1 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
43
Find the value of the integral 0xxcosxdx\int _ { 0 } ^ { x } x \cos x d x

A) 2- 2
B) 2π22 \pi - 2
C) π2\frac { \pi } { 2 }
D)4
E)2
F) π\pi
G) 2π2 \pi
H) 4- 4
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
44
Find the value of the integral 0x/2x2sinxdx\int _ { 0 } ^ { x / 2 } x ^ { 2 } \sin x d x

A) π2\pi - 2

B) π24\frac { \pi - 2 } { 4 }
C) π22\frac { \pi - 2 } { 2 }
D)1
E) 2π2 - \pi
F) 2π4\frac { 2 - \pi } { 4 }

G) 2π2\frac { 2 - \pi } { 2 }

H)0
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
45
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
46
Find the partial fraction expansion of the rational function: 9(x+1)2(2x)\frac { 9 } { ( x + 1 ) ^ { 2 } ( 2 - x ) } .

A) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } + \frac { - 1 } { x - 2 }
B) 1x+11x2\frac { 1 } { x + 1 } - \frac { 1 } { x - 2 }
C) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { - 3 } { ( x + 1 ) ^ { 2 } } + \frac { - 1 } { x - 2 }
D) 3(x+1)21x2\frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
E) 1x+1+3(x+1)2+1x2\frac { 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } + \frac { 1 } { x - 2 }
F) 1x+13(x+1)21x2\frac { 1 } { x + 1 } - \frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
G) 1x+1+3(x+1)21x2\frac { 1 } { x + 1 } + \frac { 3 } { ( x + 1 ) ^ { 2 } } - \frac { 1 } { x - 2 }
H) 1x+1+3(x+1)2+1x2\frac { - 1 } { x + 1 } + \frac { - 3 } { ( x + 1 ) ^ { 2 } } + \frac { 1 } { x - 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
47
Find the value of the integral 14lnxx2dx\int _ { 1 } ^ { 4 } \frac { \ln x } { x ^ { 2 } } d x

A) θ\theta

B) 2e12 e - 1
C) 32ln2\frac { 3 } { 2 } - \ln 2
D) 12ln22\frac { 1 } { 2 } - \frac { \ln 2 } { 2 }
E) e2e - 2
F) e1e - 1

G) 34ln22\frac { 3 } { 4 } - \frac { \ln 2 } { 2 }

H) 1ln21 - \ln 2
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
49
Find the value of the integral 01t(2t1)4dt\int _ { 0 } ^ { 1 } t ( 2 t - 1 ) ^ { 4 } d t

A) 13\frac { 1 } { 3 }

B) 14\frac { 1 } { 4 }
C) 15\frac { 1 } { 5 }
D)1
E) 12\frac { 1 } { 2 }
F) 110\frac { 1 } { 10 }

G) 120\frac { 1 } { 20 }

H)0
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
50
Find the value of the integral 01xtan1xdx\int _ { 0 } ^ { 1 } x \tan ^ { - 1 } x d x

A) π4\frac { \pi } { 4 }

B) π2\pi - 2
C) π2\frac { \pi } { 2 }
D) π22\frac { \pi - 2 } { 2 }
E) π24\frac { \pi - 2 } { 4 }
F) π1\pi - 1

G) π12\frac { \pi - 1 } { 2 }

H) π14\frac { \pi - 1 } { 4 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
51
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
52
Find the partial fraction expansion of the rational function: x2(x1)(x2+1)\frac { x ^ { 2 } } { ( x - 1 ) \left( x ^ { 2 } + 1 \right) } .

A) 12(x1)+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { 1 } { 2 \left( x ^ { 2 } + 1 \right) }
B) 12(x1)+x2(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { x } { 2 \left( x ^ { 2 } + 1 \right) }
C) 1(x1)+x+1(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { x + 1 } { \left( x ^ { 2 } + 1 \right) }
D) 1(x1)+1(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { 1 } { \left( x ^ { 2 } + 1 \right) }
E) 12(x1)+x+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
F) 12(x1)+x+12(x2+1)\frac { - 1 } { 2 ( x - 1 ) } + \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
G) 1(x1)+x(x2+1)\frac { 1 } { ( x - 1 ) } + \frac { x } { \left( x ^ { 2 } + 1 \right) }
H) 12(x1)x+12(x2+1)\frac { 1 } { 2 ( x - 1 ) } - \frac { x + 1 } { 2 \left( x ^ { 2 } + 1 \right) }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
53
Evaluate 1x24dx\int \frac { 1 } { x ^ { 2 } - 4 } d x

A) 14lnx+2x2+C\frac { 1 } { 4 } \ln \left| \frac { x + 2 } { x - 2 } \right| + C
B) lnx24+C\ln \left| x ^ { 2 } - 4 \right| + C
C) 4lnx+2x2+C4 \ln \left| \frac { x + 2 } { x - 2 } \right| + C
D) 14lnx2x+2+C\frac { 1 } { 4 } \ln \left| \frac { x - 2 } { x + 2 } \right| + C
E) 12lnx+2x2+C\frac { 1 } { 2 } \ln \left| \frac { x + 2 } { x - 2 } \right| + C
F) 14lnx24+C\frac { 1 } { 4 } \ln \left| x ^ { 2 } - 4 \right| + C
G) 12lnx2x+2+C\frac { 1 } { 2 } \ln \left| \frac { x - 2 } { x + 2 } \right| + C
H) 1x4x+C- \frac { 1 } { x } - 4 x + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
54
Find the value of the integral 01arcsintdt\int _ { 0 } ^ { 1 } \arcsin t d t

A) π2\pi - 2

B) π24\frac { \pi - 2 } { 4 }
C) π22\frac { \pi - 2 } { 2 }
D)1
E) 2π2 - \pi
F) 2π4\frac { 2 - \pi } { 4 }

G) 2π2\frac { 2 - \pi } { 2 }
H)0
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
55
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
56
Find the value of the integral 01ln(1+x2)dx\int _ { 0 } ^ { 1 } \ln \left( 1 + x ^ { 2 } \right) d x

A) ln2\ln 2

B) π8\frac { \pi } { 8 }
C) π22+ln2\frac { \pi } { 2 } - 2 + \ln 2
D) 2ln22 - \ln 2
E) π4+ln2\frac { \pi } { 4 } + \ln 2
F) π4\pi - 4

G) π2\pi - 2

H) πln2\pi - \ln 2
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
57
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
58
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
59
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
60
Find the value of the integral 01xexdx.\int _ { 0 } ^ { 1 } x e ^ { x } d x .

A)2
B) e2ee ^ { 2 } - e
C)1
D) e2e ^ { 2 }
E) ee
F) e1e - 1
G) e2e - 2
H) e12\frac { e - 1 } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate the integral cosxdx\int \cos \sqrt { x } d x

A) 2sinx+C2 \sin \sqrt { x } + C

B) 2xcosx+C2 \sqrt { x } \cos \sqrt { x } + C
C) x(cosx+sinx)+C\sqrt { x } ( \cos \sqrt { x } + \sin \sqrt { x } ) + C
D) cosx+sinxx+C\frac { \cos \sqrt { x } + \sin \sqrt { x } } { \sqrt { x } } + C
E) 2(xsinx+cosx)+C2 ( \sqrt { x } \sin \sqrt { x } + \cos \sqrt { x } ) + C
F) 2(xcosx+sinx)+C2 ( \sqrt { x } \cos \sqrt { x } + \sin \sqrt { x } ) + C

G) xcosx+sinxx+C\sqrt { x } \cos \sqrt { x } + \frac { \sin \sqrt { x } } { \sqrt { x } } + C

H) xsinx+cosxx+C\sqrt { x } \sin \sqrt { x } + \frac { \cos \sqrt { x } } { \sqrt { x } } + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
62
Find the value of ee2(lnx)2xdx\int _ { e } ^ { e ^ { 2 } } \frac { ( \ln x ) ^ { 2 } } { x } d x

A) ln2\ln 2
B) 12ln2\frac { 1 } { 2 } \ln 2
C) 12\frac { 1 } { 2 }
D) 32\frac { 3 } { 2 }
E)1

F) 1/(ln2)1 / ( \ln 2 )

G)0
H)
73\frac { 7 } { 3 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
63
Find the value of the integral 0x/2sin(2t)dt\int _ { 0 } ^ { x / 2 } \sin ( 2 t ) d t

A).0
B)1
C) 32\frac { \sqrt { 3 } } { 2 }
D) π2\frac { \pi } { 2 }
E) 24\frac { \sqrt { 2 } } { 4 }
F)2
G) 22\frac { \sqrt { 2 } } { 2 }

H) 12\frac { 1 } { 2 }


Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
64
Determine a reduction formula for Determine a reduction formula for
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
65
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
66
Find the value of the integral 0x/3secxtanx(1+secx)dx\int _ { 0 } ^ { x / 3 } \sec x \tan x ( 1 + \sec x ) d x

A)4
B) 52\frac { 5 } { 2 }
C)3
D) 112\frac { 11 } { 2 }
E) 92\frac { 9 } { 2 }
F)2
G) 72\frac { 7 } { 2 }
H)5
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
67
Find the value of the integral 0x/4sin2xcosxdx\int _ { 0 } ^ { x / 4 } \sin ^ { 2 } x \cos x d x

A) 218\frac { \sqrt { 2 } } { 18 }

B) π4\frac { \pi } { 4 }
C) 3π2\frac { 3 \pi } { 2 }
D) 212\frac { \sqrt { 2 } } { 12 }
E) 26\frac { \sqrt { 2 } } { 6 }
F) 29\frac { \sqrt { 2 } } { 9 }

G) 2π3\frac { 2 \pi } { 3 }

H) π2\frac { \pi } { 2 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
68
(a) Use integration by parts to prove the reduction formula: (a) Use integration by parts to prove the reduction formula:   (b) Demonstrate your understanding of this formula by using it to evaluate:  (b) Demonstrate your understanding of this formula by using it to evaluate: (a) Use integration by parts to prove the reduction formula:   (b) Demonstrate your understanding of this formula by using it to evaluate:
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
69
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
71
Find the value of the integral 01x2(x3+1)2dx\int _ { 0 } ^ { 1 } \frac { x ^ { 2 } } { \left( x ^ { 3 } + 1 \right) ^ { 2 } } d x

A) 34\frac { 3 } { 4 }
B)2
C) 37\frac { 3 } { 7 }
D)
73\frac { 7 } { 3 }
E) 16\frac { 1 } { 6 }
F) 32\frac { 3 } { 2 }
G) 23\frac { 2 } { 3 }
H)1
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
72
Find the value of the integral 0x/2cosxsin(sinx)dx\int _ { 0 } ^ { x / 2 } \cos x \sin ( \sin x ) d x

A) π2\frac { \pi } { 2 }

B) 1π41 - \frac { \pi } { 4 }
C)sin 1
D)1 - cos 1
E) π2sin1\frac { \pi } { 2 } - \sin 1
F) π4+cos1\frac { \pi } { 4 } + \cos 1
G) 1+3π41 + \frac { 3 \pi } { 4 }
H)1 + tan 1
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the integral 1+lnxxlnxdx\int \frac { 1 + \ln x } { x \ln x } d x

A) lnx+C\ln x + C

B) lnlnx+C\ln \ln x + C
C) x+lnx+Cx + \ln x + C
D) lnx+lnlnx+C\ln x + \ln \ln x + C
E) xlnx+C\frac { x } { \ln x } + C
F) lnx(x+lnx)+C\frac { \ln x } { ( x + \ln x ) } + C

G) xlnx+Cx \ln x + C

H) xlnlnx+Cx \ln \ln x + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
74
Find the value of the integral 01(x3+1)5x2dx\int _ { 0 } ^ { 1 } \left( x ^ { 3 } + 1 \right) ^ { 5 } x ^ { 2 } d x

A)0
B)1
C) 212\frac { 21 } { 2 }

D) 329\frac { 32 } { 9 }
E) 323\frac { 32 } { 3 }
F)2
G) 72\frac { 7 } { 2 }
H) 32\frac { 3 } { 2 }


Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
75
Find the value of eedxxlnx\int _ { e } ^ { e } \frac { d x } { x \sqrt { \ln x } }

A)0
B)1
C)2
D)3
E)4
F)5
G)6
H)7
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate the following integrals:
(a) Evaluate the following integrals: (a)   (b)   (c)   (d)  (b) Evaluate the following integrals: (a)   (b)   (c)   (d)  (c) Evaluate the following integrals: (a)   (b)   (c)   (d)  (d) Evaluate the following integrals: (a)   (b)   (c)   (d)
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
77
Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   . (3) = Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   . . Determine the value of Let f be a twice differentiable function such that f(0) = 5, f(3) = 1, and   (3) =   . Determine the value of   . .
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
78
Find the value of the integral 141(1+x)21xdx\int _ { 1 } ^ { 4 } \frac { 1 } { ( 1 + \sqrt { x } ) ^ { 2 } } \frac { 1 } { \sqrt { x } } d x

A) 65\frac { 6 } { 5 }

B) 13\frac { 1 } { 3 }
C) 23\frac { 2 } { 3 }
D) 52\frac { 5 } { 2 }
E) 49\frac { 4 } { 9 }
F) 32\frac { 3 } { 2 }

G) 56\frac { 5 } { 6 }

H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
79
Find the value of the integral 33x1+3x2dx\int _ { - 3 } ^ { 3 } \frac { x } { \sqrt { 1 + 3 x ^ { 2 } } } d x

A) 23(71)\frac { 2 } { 3 } ( \sqrt { 7 } - 1 )

B) 71\sqrt { 7 } - 1
C)0
D) 13\frac { 1 } { 3 }
E) 23\frac { 2 } { 3 }
F) 17\frac { 1 } { \sqrt { 7 } }
G) 7\sqrt { 7 }
H)Does not exist
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
80
Evaluate cos(lnx)dx\int \cos ( \ln x ) d x

A) sin(lnx)+C\sin ( \ln x ) + C

B) x22[cos(lnx)+sin(lnx)]+C\frac { x ^ { 2 } } { 2 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
C) cos(1x)+C\cos \left( \frac { 1 } { x } \right) + C
D) x4[cos(lnx)+sin(lnx)]+C\frac { x } { 4 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
E) sinxx+C\frac { \sin x } { x } + C
F) x[cos(lnx)+sin(lnx)]+Cx [ \cos ( \ln x ) + \sin ( \ln x ) ] + C

G) sin(1x)+C- \sin \left( \frac { 1 } { x } \right) + C

H) x2[cos(lnx)+sin(lnx)]+C\frac { x } { 2 } [ \cos ( \ln x ) + \sin ( \ln x ) ] + C
Unlock Deck
Unlock for access to all 239 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 239 flashcards in this deck.