Deck 12: Multiple Integrals

Full screen (f)
exit full mode
Question
Find the Jacobian of the transformation Find the Jacobian of the transformation   ,   .<div style=padding-top: 35px> , Find the Jacobian of the transformation   ,   .<div style=padding-top: 35px> .
Use Space or
up arrow
down arrow
to flip the card.
Question
Find the Jacobian of the transformation x=ρsinϕcosθx = \rho \sin \phi \cos \theta , y=ρsinϕsinθy = \rho \sin \phi \sin \theta , z=ρcosϕz = \rho \cos \phi .

A) θ\theta
B) β2sinϕ\beta ^ { 2 } \sin \phi
C) ρsinϕ\rho \sin \phi
D) ρ2cosϕ\rho ^ { 2 } \cos \phi
E)2 θ\theta
F) ρ2sinθ\rho ^ { 2 } \sin \theta
G) ρsinθ\rho \sin \theta
H) ρcosϕ\rho \cos \phi


Question
Find the Jacobian of the transformation Find the Jacobian of the transformation   ,   .<div style=padding-top: 35px> , Find the Jacobian of the transformation   ,   .<div style=padding-top: 35px> .
Question
Evaluate the integral Rx2+9y2dA\iint _ { R } \sqrt { x ^ { 2 } + 9 y ^ { 2 } } d A , where R is the region enclosed by the ellipse x29+y2=1\frac { x ^ { 2 } } { 9 } + y ^ { 2 } = 1 .

A)24 π\pi
B) π\pi
C)12 π\pi
D)3 π\pi
E)10 π\pi
F)2 π\pi
G)6 π\pi
H)4 π\pi
Question
Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } .

A) uv2u v ^ { 2 }

B) 2uv22 u v ^ { 2 }
C) 3uv23 u v ^ { 2 }
D) 6uv26 u v ^ { 2 }
E) uv2- u v ^ { 2 }
F) 2uv2- 2 u v ^ { 2 }

G) 3uv2- 3 u v ^ { 2 }

H) 6uv2- 6 u v ^ { 2 }
Question
Find the Jacobian of the transformation x = 3u + v, y = u - 2w, z = v + w.

A)1
E)-1
B)6
F)-6
C)-5
G)5
D)4
H)-4
Question
Find the area of the region whose image under the transformation x = u + v, y = v - 2u is D={(x,y)1x1,0y1x2}D = \left\{ ( x , y ) \mid - 1 \leq x \leq 1,0 \leq y \leq 1 - x ^ { 2 } \right\} .

A) 19\frac { 1 } { 9 }

B) 29\frac { 2 } { 9 }
C) 13\frac { 1 } { 3 }
D) 49\frac { 4 } { 9 }
E) 59\frac { 5 } { 9 }
F) 23\frac { 2 } { 3 }

G) 79\frac { 7 } { 9 }

H) 89\frac { 8 } { 9 }
Question
Evaluate the integral Rx+yxydA\iint _ { R } \frac { x + y } { x - y } d A , where R is the triangular region with vertices (1, 0), (0, -1), and (0, 0).

A)0
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 34\frac { 3 } { 4 }
E)1
F) 32\frac { 3 } { 2 }
G)2
H)-2


Question
Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } , when u=12u = \frac { 1 } { 2 } and v = 1.

A)1
B)2
C)3
D)6
E)-1
F)-2
G)-3
H)-6
Question
Find the Jacobian of the transformation x = u + v, y = 2u - v.

A)1
E)-1
B)2
F)-2
C)3
G)-3
D)4
H)-4
Question
Use the change of variables u = 2x - y, v = x + y to evaluate Use the change of variables u = 2x - y, v = x + y to evaluate   where R is the region bounded by 2x - y = 1, 2x - y = 3, x + y = 1, and x + y = 2.<div style=padding-top: 35px> where R is the region bounded by 2x - y = 1, 2x - y = 3, x + y = 1, and x + y = 2.
Question
Find the Jacobian of the transformation x = u, y = 2v, z = 3w.

A)1
E)-1
B)2
F)-2
C)3
G)-3
D)6
H)-6
Question
Use the change of variables Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   .<div style=padding-top: 35px> , Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   .<div style=padding-top: 35px> to evaluate Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   .<div style=padding-top: 35px> , where R is the region bounded by the curves xy = 1, xy = 2, Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   .<div style=padding-top: 35px> , and Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   .<div style=padding-top: 35px> .
Question
Under the transformation x = u + v, y = v - 2u, the image of the circle x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 is an ellipse. What is the area of that ellipse?

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }
C) π2\frac { \pi } { 2 }
D) 2π3\frac { 2 \pi } { 3 }
E) π\pi
F) 3π2\frac { 3 \pi } { 2 }

G) 2π2 \pi

H) 3π3 \pi
Question
Use the change of variables x = 2u + 3v, y = 3u - 2v to evaluate Use the change of variables x = 2u + 3v, y = 3u - 2v to evaluate   , where R is the square with vertices (0, 0), (2, 3), (5, 1), and (3, -2).<div style=padding-top: 35px> , where R is the square with vertices (0, 0), (2, 3), (5, 1), and (3, -2).
Question
Find the Jacobian of the transformation x = u sin v, y = u cos v when u = 3 and v = 5.

A)3
E)-3
B)5
F)-5
C)7.5
G)-7.5
D)15
H)-15
Question
Find the Jacobian of the transformation x=rcosθx = r \cos \theta , y=rsinθy = r \sin \theta , z = z.

A) θ\theta
B)z
C)r
D)1
E)2 θ\theta
F)2z
G)2r
H)2
Question
Find the Jacobian of the transformation x = 2u, Find the Jacobian of the transformation x = 2u,   ,   .<div style=padding-top: 35px> , Find the Jacobian of the transformation x = 2u,   ,   .<div style=padding-top: 35px> .
Question
Find the Jacobian of the transformation x=usinvx = u \sin v , y=ucosvy = u \cos v .

A) u- u

B)
u2- u ^ { 2 }
C)u
D) u2u ^ { 2 }
E) u2sinvcosv- u ^ { 2 } \sin v \cos v
F) u2sinvcosvu ^ { 2 } \sin v \cos v
G) 2u2sinvcosv- 2 u ^ { 2 } \sin v \cos v
H) 2u2sinvcosv2 u ^ { 2 } \sin v \cos v
Question
Use the change of variables Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   .<div style=padding-top: 35px> , Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   .<div style=padding-top: 35px> to evaluate Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   .<div style=padding-top: 35px> , where R is the region bounded by the ellipse Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   .<div style=padding-top: 35px> .
Question
Evaluate Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   .<div style=padding-top: 35px> ,where R is the rectangular region bounded by the lines x + y = 0, Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   .<div style=padding-top: 35px> , x - y = 0, and Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   .<div style=padding-top: 35px> .
Question
Evaluate the iterated integral 02π0101r2zrdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - r ^ { 2 } } } z r d z d r d \theta .

A) π8\frac { \pi } { 8 }

B) π4\frac { \pi } { 4 }

C) π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) π6\frac { \pi } { 6 }
Question
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px> Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px>
Question
Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane. Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> (b) Find the inverse transformation Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> .(c) Evaluate the double integral Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> .
Question
Evaluate Evaluate   , where R is the region enclosed by the ellipse   .<div style=padding-top: 35px> , where R is the region enclosed by the ellipse Evaluate   , where R is the region enclosed by the ellipse   .<div style=padding-top: 35px> .
Question
Compute the Jacobian of the transformation T given by Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T.<div style=padding-top: 35px> , Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T.<div style=padding-top: 35px> , and find the image of Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T.<div style=padding-top: 35px> under T.
Question
Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane. Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> (b) Find the inverse transformation Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> .(c) Evaluate the double integral Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   .<div style=padding-top: 35px> .
Question
Compute the Jacobian of the transformation T given by Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S.<div style=padding-top: 35px> , Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S.<div style=padding-top: 35px> . Compute the area of the image of Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S.<div style=padding-top: 35px> and compare it to the area of S.
Question
Evaluate Evaluate   , where E is the solid bounded by the ellipsoid   .<div style=padding-top: 35px> , where E is the solid bounded by the ellipsoid Evaluate   , where E is the solid bounded by the ellipsoid   .<div style=padding-top: 35px> .
Question
Describe the image R of the set Describe the image R of the set   under the transformation   ,   , and then compute   .<div style=padding-top: 35px> under the transformation Describe the image R of the set   under the transformation   ,   , and then compute   .<div style=padding-top: 35px> , Describe the image R of the set   under the transformation   ,   , and then compute   .<div style=padding-top: 35px> , and then compute Describe the image R of the set   under the transformation   ,   , and then compute   .<div style=padding-top: 35px> .
Question
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px> Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px>
Question
Evaluate the iterated integral 0x/20x/201ρ3sinϕcosϕdρdϕdθ\int _ { 0 } ^ { x / 2 } \int _ { 0 } ^ { x / 2 } \int _ { 0 } ^ { 1 } \rho ^ { 3 } \sin \phi \cos \phi d \rho d \phi d \theta .

A) π8\frac { \pi } { 8 }

B) π4\frac { \pi } { 4 }

C) π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) π6\frac { \pi } { 6 }
Question
Evaluate the iterated integral 02x011y24r2dzdrdθ\int _ { 0 } ^ { 2 x } \int _ { 0 } ^ { 1 } \int _ { 1 - y ^ { 2 } } ^ { 4 } r ^ { 2 } d z d r d \theta .

A) π5\frac { \pi } { 5 }

B) 7π5\frac { 7 \pi } { 5 }

C)4 π\pi

D)12 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) 12π3\frac { 12 \pi } { 3 }

H) 12π5\frac { 12 \pi } { 5 }
Question
Use the change of variables Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   .<div style=padding-top: 35px> , Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   .<div style=padding-top: 35px> , Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   .<div style=padding-top: 35px> to evaluate Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   .<div style=padding-top: 35px> , where E is the solid enclosed by the ellipsoid Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   .<div style=padding-top: 35px> .
Question
Evaluate Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0, x + y = 1, x - y = 0, and x - y = 1.<div style=padding-top: 35px> ,where R is the rectangular region bounded by the lines x + y = 0, x + y = 1, x - y = 0, and x - y = 1.
Question
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px> Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    <div style=padding-top: 35px>
Question
Evaluate the triple integral ErdV\iiint _ { E } r d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θ2π,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi , 0 \leq z \leq 1 \} .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Question
Evaluate the triple integral E1dV\iiint _ { E } 1 d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θπ,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq \pi , 0 \leq z \leq 1 \} .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi

Question
Evaluate Evaluate   by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse   .<div style=padding-top: 35px> by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse Evaluate   by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse   .<div style=padding-top: 35px> .
Question
Compute the Jacobian of the transformation T given by x=vcos2πux = v \cos 2 \pi u , y=vsin2πuy = v \sin 2 \pi u . Describe the image of S={(u,v)0u1,0v1}S = \{ ( u , v ) \mid 0 \leq u \leq 1,0 \leq v \leq 1 \} , and compute its area.
Question
A sphere of radius k has a volume of A sphere of radius k has a volume of   . Set up the iterated integrals in rectangular, cylindrical, and spherical coordinates to show this.<div style=padding-top: 35px> . Set up the iterated integrals in rectangular, cylindrical, and spherical coordinates to show this.
Question
Evaluate the triple integral Ex2+y2+z2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V in spherical coordinates, where E is the solid bounded by the hemisphere z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the plane z = 0.

A) π4\frac { \pi } { 4 }

B)16 π\pi

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F)8 π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi


Question
Evaluate Evaluate   , where E is the solid bounded by the sphere   .<div style=padding-top: 35px> , where E is the solid bounded by the sphere Evaluate   , where E is the solid bounded by the sphere   .<div style=padding-top: 35px> .
Question
Find the volume bounded above by the surface Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   .<div style=padding-top: 35px> , Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   .<div style=padding-top: 35px> , below by the xy-plane, and laterally by the cylinder Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   .<div style=padding-top: 35px> .
Question
Use cylindrical coordinates to find Use cylindrical coordinates to find   , where R is the region bounded by   and   .<div style=padding-top: 35px> , where R is the region bounded by Use cylindrical coordinates to find   , where R is the region bounded by   and   .<div style=padding-top: 35px> and Use cylindrical coordinates to find   , where R is the region bounded by   and   .<div style=padding-top: 35px> .
Question
Find the mass of the solid that occupies the region bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 , z = 2, and z = 0 and has density function ρ(x,y,z)=z\rho ( x , y , z ) = z .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Question
Evaluate Evaluate   by changing to cylindrical coordinates.<div style=padding-top: 35px> by changing to cylindrical coordinates.
Question
Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V , where E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} .

A) 2π3\frac { 2 \pi } { 3 }

B) 2π5\frac { 2 \pi } { 5 }

C) 4π3\frac { 4 \pi } { 3 }

D) 4π5\frac { 4 \pi } { 5 }

E)2 π\pi

F) 6π5\frac { 6 \pi } { 5 }

G) 8π3\frac { 8 \pi } { 3 }

H) 8π5\frac { 8 \pi } { 5 }
Question
Evaluate Evaluate   by changing to spherical coordinates.<div style=padding-top: 35px> by changing to spherical coordinates.
Question
Find the volume of the region above the paraboloid Find the volume of the region above the paraboloid   and below the hemisphere   .<div style=padding-top: 35px> and below the hemisphere Find the volume of the region above the paraboloid   and below the hemisphere   .<div style=padding-top: 35px> .
Question
Evaluate the iterated integral 0π/20π/201ρ2sinϕdρdϕdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 1 } \rho ^ { 2 } \sin \phi d \rho d \phi d \theta .

A) π6\frac { \pi } { 6 }

B) π4\frac { \pi } { 4 }

C)4 π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) 4π3\frac { 4 \pi } { 3 }
Question
Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V in spherical coordinates, where E is the solid in the first octant bounded by the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and the coordinate planes.

A) 32π5\frac { 32 \pi } { 5 }

B) 4π5\frac { 4 \pi } { 5 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 16π5\frac { 16 \pi } { 5 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Question
Find the mass of the solid that occupies the region bounded by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane z = 1 and has density function ρ(x,y,z)=x2+y2\rho ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } } .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π15\frac { 4 \pi } { 15 }

H)2 π\pi
Question
Find the mass of that portion of the solid bounded above by the sphere Find the mass of that portion of the solid bounded above by the sphere   which lies in the first octant, if the density varies as the distance from the center of the sphere.<div style=padding-top: 35px> which lies in the first octant, if the density varies as the distance from the center of the sphere.
Question
A region W in A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> is described completely by A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> , A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> , A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> , and A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> .(a) Describe or sketch this region. A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.<div style=padding-top: 35px> (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.
Question
Evaluate Evaluate   by changing to spherical coordinates.<div style=padding-top: 35px> by changing to spherical coordinates.
Question
Evaluate Evaluate   , where E is the solid bounded by the sphere   and the cone   .<div style=padding-top: 35px> , where E is the solid bounded by the sphere Evaluate   , where E is the solid bounded by the sphere   and the cone   .<div style=padding-top: 35px> and the cone Evaluate   , where E is the solid bounded by the sphere   and the cone   .<div style=padding-top: 35px> .
Question
Use a triple integral in spherical coordinates to find the volume of that part of the sphere Use a triple integral in spherical coordinates to find the volume of that part of the sphere   which lies inside the cone   .<div style=padding-top: 35px> which lies inside the cone Use a triple integral in spherical coordinates to find the volume of that part of the sphere   which lies inside the cone   .<div style=padding-top: 35px> .
Question
Let E be the solid that lies below the sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } and above the cone ϕ=β\phi = \beta , where 0<β<π20 < \beta < \frac { \pi } { 2 } . Find the value of the triple integral EzdV\iiint _ { E } z d V .

A) πa2sinβ\pi a ^ { 2 } \sin \beta

B). 12πa2sinβ\frac { 1 } { 2 } \pi a ^ { 2 } \sin \beta
C) πa2sin2β\pi a ^ { 2 } \sin ^ { 2 } \beta
D) 12πa2sin2β\frac { 1 } { 2 } \pi a ^ { 2 } \sin ^ { 2 } \beta
E) 14πa2sin2β\frac { 1 } { 4 } \pi a ^ { 2 } \sin ^ { 2 } \beta
F) 12πα4sin2β\frac { 1 } { 2 } \pi \alpha ^ { 4 } \sin ^ { 2 } \beta


G) 14πa4sin2β\frac { 1 } { 4 } \pi a ^ { 4 } \sin ^ { 2 } \beta

H) πa4sinβ\pi a ^ { 4 } \sin \beta
Question
Find the volume of the region inside the cylinder Find the volume of the region inside the cylinder   which is bounded below by the xy-plane and above by the sphere   .<div style=padding-top: 35px> which is bounded below by the xy-plane and above by the sphere Find the volume of the region inside the cylinder   which is bounded below by the xy-plane and above by the sphere   .<div style=padding-top: 35px> .
Question
Evaluate the iterated integral 0In40In30In2e05x+yzdzdydx\int _ { 0 } ^ { \mathrm { In } 4 } \int _ { 0 } ^ { \mathrm { In } 3 } \int _ { 0 } ^ { \mathrm { In } 2 } e ^ { 05 x + y - z } d z d y d x .

A)6
B)1
C)3
D)2
E)-6
F)-1
G)-3
H)-2
Question
Evaluate the iterated integral 010x0yydxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y } y d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Question
Give a geometric description of the solid S whose volume in cylindrical coordinates is given by Give a geometric description of the solid S whose volume in cylindrical coordinates is given by   .<div style=padding-top: 35px> .
Question
Find the mass of the solid that occupies the region E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} and has density function ρ(x,y,z)=x\rho ( x , y , z ) = x .

A) 16\frac { 1 } { 6 }

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 56\frac { 5 } { 6 }

H)1
Question
Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is   .<div style=padding-top: 35px> .
Question
Evaluate the iterated integral 02010x6xy2sinzdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } 6 x y ^ { 2 } \sin z d z d y d x .

A) 2\sqrt { 2 }
B)2
C)4
D)16
E)12
F) 222 \sqrt { 2 }
G)48
H)8
Question
Evaluate the iterated integral 010x0y2dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y ^ { 2 } } d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Question
Evaluate the iterated integral 01x3xyx2zdzdydx\int _ { 0 } ^ { 1 } \int _ { x } ^ { 3 x } \int _ { \sqrt { y } } ^ { x } 2 z d z d y d x .

A) 512- \frac { 5 } { 12 }

B) 56- \frac { 5 } { 6 }
C) 112- \frac { 1 } { 12 }
D) 16- \frac { 1 } { 6 }
E)
512\frac { 5 } { 12 }
F) 56\frac { 5 } { 6 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Question
Let E be the part of the solid ellipsoid Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates.<div style=padding-top: 35px> that lies in the first octant above
the plane z = 1.(a) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates.<div style=padding-top: 35px> as an iterated integral in rectangular coordinates.(b) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates.<div style=padding-top: 35px> as an iterated integral in cylindrical coordinates.(c) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates.<div style=padding-top: 35px> as an iterated integral in spherical coordinates.
Question
Evaluate the triple integral ExdV\iiint _ { E } x d V , where E={(x,y,z)0xy,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq y , 0 \leq y \leq 1,0 \leq z \leq 1 \} .

A) 16\frac { 1 } { 6 }

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 112\frac { 1 } { 12 }

G) 56\frac { 5 } { 6 }

H)1
Question
Evaluate the iterated integral 010x0ydxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y } d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }
G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Question
Sketch the region E whose volume is given by the integral Sketch the region E whose volume is given by the integral   .  <div style=padding-top: 35px> . Sketch the region E whose volume is given by the integral   .  <div style=padding-top: 35px>
Question
Evaluate the triple integral EydV\iiint _ { E } y d V , where E is the solid bounded by the coordinate planes and the plane 2x + y + z = 4.

A)1
B) 316\frac { 3 } { 16 }
C) 83\frac { 8 } { 3 }
D) 38\frac { 3 } { 8 }
E) 23\frac { 2 } { 3 }
F) 163\frac { 16 } { 3 }
G) 323\frac { 32 } { 3 }
H) 332\frac { 3 } { 32 }
Question
Evaluate Evaluate   , where E is the solid bounded by the cylinder   , above by z = 3 and below by z = 0.<div style=padding-top: 35px> , where E is the solid bounded by the cylinder Evaluate   , where E is the solid bounded by the cylinder   , above by z = 3 and below by z = 0.<div style=padding-top: 35px> , above by z = 3 and below by z = 0.
Question
Let E be the solid bounded above by the sphere Let E be the solid bounded above by the sphere   and below by the cone   .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates.<div style=padding-top: 35px> and below by the cone Let E be the solid bounded above by the sphere   and below by the cone   .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates.<div style=padding-top: 35px> .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates.
Question
Evaluate the iterated integral 0x/4020x2xcos(2y)dzdxdy\int _ { 0 } ^ { x / 4 } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x ^ { 2 } } x \cos ( 2 y ) d z d x d y .

A)0
B)8
C)4
D)16
E)6
F)2
G)5
H)1
Question
Evaluate the triple integral EzdV\iiint _ { E } z d V , where E is the wedge in the first octant bounded by y2+z2=1y ^ { 2 } + z ^ { 2 } = 1 , y = x, and the yz-plane.

A) 14\frac { 1 } { 4 }

B) 18\frac { 1 } { 8 }
C) 12\frac { 1 } { 2 }
D) 23\frac { 2 } { 3 }
E) 34\frac { 3 } { 4 }
F)1
G) 54\frac { 5 } { 4 }

H) 43\frac { 4 } { 3 }
Question
Evaluate the triple integral E(x+2y)dV\iiint _ { E } ( x + 2 y ) d V , where E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} .

A) 14\frac { 1 } { 4 }

B) 12\frac { 1 } { 2 }
C) 34\frac { 3 } { 4 }
D)1
E) 54\frac { 5 } { 4 }
F) 32\frac { 3 } { 2 }

G) 74\frac { 7 } { 4 }
H)2
Question
Evaluate the iterated integral 110201x2+y2+z2dxdydz\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } d x d y d z .

A) 113\frac { 11 } { 3 }
B)8

C)4
D)16
E) 116\frac { 11 } { 6 }
F)2
G)5
H)1
Question
Give a geometric description of the solid S whose volume in spherical coordinates is given by Give a geometric description of the solid S whose volume in spherical coordinates is given by   .<div style=padding-top: 35px> .
Unlock Deck
Sign up to unlock the cards in this deck!
Unlock Deck
Unlock Deck
1/270
auto play flashcards
Play
simple tutorial
Full screen (f)
exit full mode
Deck 12: Multiple Integrals
1
Find the Jacobian of the transformation Find the Jacobian of the transformation   ,   . , Find the Jacobian of the transformation   ,   . .
4v
2
Find the Jacobian of the transformation x=ρsinϕcosθx = \rho \sin \phi \cos \theta , y=ρsinϕsinθy = \rho \sin \phi \sin \theta , z=ρcosϕz = \rho \cos \phi .

A) θ\theta
B) β2sinϕ\beta ^ { 2 } \sin \phi
C) ρsinϕ\rho \sin \phi
D) ρ2cosϕ\rho ^ { 2 } \cos \phi
E)2 θ\theta
F) ρ2sinθ\rho ^ { 2 } \sin \theta
G) ρsinθ\rho \sin \theta
H) ρcosϕ\rho \cos \phi


β2sinϕ\beta ^ { 2 } \sin \phi
3
Find the Jacobian of the transformation Find the Jacobian of the transformation   ,   . , Find the Jacobian of the transformation   ,   . .
-2s
4
Evaluate the integral Rx2+9y2dA\iint _ { R } \sqrt { x ^ { 2 } + 9 y ^ { 2 } } d A , where R is the region enclosed by the ellipse x29+y2=1\frac { x ^ { 2 } } { 9 } + y ^ { 2 } = 1 .

A)24 π\pi
B) π\pi
C)12 π\pi
D)3 π\pi
E)10 π\pi
F)2 π\pi
G)6 π\pi
H)4 π\pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
5
Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } .

A) uv2u v ^ { 2 }

B) 2uv22 u v ^ { 2 }
C) 3uv23 u v ^ { 2 }
D) 6uv26 u v ^ { 2 }
E) uv2- u v ^ { 2 }
F) 2uv2- 2 u v ^ { 2 }

G) 3uv2- 3 u v ^ { 2 }

H) 6uv2- 6 u v ^ { 2 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
6
Find the Jacobian of the transformation x = 3u + v, y = u - 2w, z = v + w.

A)1
E)-1
B)6
F)-6
C)-5
G)5
D)4
H)-4
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
7
Find the area of the region whose image under the transformation x = u + v, y = v - 2u is D={(x,y)1x1,0y1x2}D = \left\{ ( x , y ) \mid - 1 \leq x \leq 1,0 \leq y \leq 1 - x ^ { 2 } \right\} .

A) 19\frac { 1 } { 9 }

B) 29\frac { 2 } { 9 }
C) 13\frac { 1 } { 3 }
D) 49\frac { 4 } { 9 }
E) 59\frac { 5 } { 9 }
F) 23\frac { 2 } { 3 }

G) 79\frac { 7 } { 9 }

H) 89\frac { 8 } { 9 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
8
Evaluate the integral Rx+yxydA\iint _ { R } \frac { x + y } { x - y } d A , where R is the triangular region with vertices (1, 0), (0, -1), and (0, 0).

A)0
B) 14\frac { 1 } { 4 }
C) 12\frac { 1 } { 2 }
D) 34\frac { 3 } { 4 }
E)1
F) 32\frac { 3 } { 2 }
G)2
H)-2


Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
9
Find the Jacobian of the transformation x=u2x = u ^ { 2 } , y=v3y = v ^ { 3 } , when u=12u = \frac { 1 } { 2 } and v = 1.

A)1
B)2
C)3
D)6
E)-1
F)-2
G)-3
H)-6
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
10
Find the Jacobian of the transformation x = u + v, y = 2u - v.

A)1
E)-1
B)2
F)-2
C)3
G)-3
D)4
H)-4
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
11
Use the change of variables u = 2x - y, v = x + y to evaluate Use the change of variables u = 2x - y, v = x + y to evaluate   where R is the region bounded by 2x - y = 1, 2x - y = 3, x + y = 1, and x + y = 2. where R is the region bounded by 2x - y = 1, 2x - y = 3, x + y = 1, and x + y = 2.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
12
Find the Jacobian of the transformation x = u, y = 2v, z = 3w.

A)1
E)-1
B)2
F)-2
C)3
G)-3
D)6
H)-6
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
13
Use the change of variables Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   . , Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   . to evaluate Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   . , where R is the region bounded by the curves xy = 1, xy = 2, Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   . , and Use the change of variables   ,   to evaluate   , where R is the region bounded by the curves xy = 1, xy = 2,   , and   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
14
Under the transformation x = u + v, y = v - 2u, the image of the circle x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 is an ellipse. What is the area of that ellipse?

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }
C) π2\frac { \pi } { 2 }
D) 2π3\frac { 2 \pi } { 3 }
E) π\pi
F) 3π2\frac { 3 \pi } { 2 }

G) 2π2 \pi

H) 3π3 \pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
15
Use the change of variables x = 2u + 3v, y = 3u - 2v to evaluate Use the change of variables x = 2u + 3v, y = 3u - 2v to evaluate   , where R is the square with vertices (0, 0), (2, 3), (5, 1), and (3, -2). , where R is the square with vertices (0, 0), (2, 3), (5, 1), and (3, -2).
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
16
Find the Jacobian of the transformation x = u sin v, y = u cos v when u = 3 and v = 5.

A)3
E)-3
B)5
F)-5
C)7.5
G)-7.5
D)15
H)-15
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
17
Find the Jacobian of the transformation x=rcosθx = r \cos \theta , y=rsinθy = r \sin \theta , z = z.

A) θ\theta
B)z
C)r
D)1
E)2 θ\theta
F)2z
G)2r
H)2
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
18
Find the Jacobian of the transformation x = 2u, Find the Jacobian of the transformation x = 2u,   ,   . , Find the Jacobian of the transformation x = 2u,   ,   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
19
Find the Jacobian of the transformation x=usinvx = u \sin v , y=ucosvy = u \cos v .

A) u- u

B)
u2- u ^ { 2 }
C)u
D) u2u ^ { 2 }
E) u2sinvcosv- u ^ { 2 } \sin v \cos v
F) u2sinvcosvu ^ { 2 } \sin v \cos v
G) 2u2sinvcosv- 2 u ^ { 2 } \sin v \cos v
H) 2u2sinvcosv2 u ^ { 2 } \sin v \cos v
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
20
Use the change of variables Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   . , Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   . to evaluate Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   . , where R is the region bounded by the ellipse Use the change of variables   ,   to evaluate   , where R is the region bounded by the ellipse   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
21
Evaluate Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   . ,where R is the rectangular region bounded by the lines x + y = 0, Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   . , x - y = 0, and Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0,   , x - y = 0, and   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
22
Evaluate the iterated integral 02π0101r2zrdzdrdθ\int _ { 0 } ^ { 2 \pi } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - r ^ { 2 } } } z r d z d r d \theta .

A) π8\frac { \pi } { 8 }

B) π4\frac { \pi } { 4 }

C) π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) π6\frac { \pi } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
23
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
24
Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane. Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . (b) Find the inverse transformation Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . .(c) Evaluate the double integral Let T be the transformation given by x = 2u + v, y = u + 2v.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
25
Evaluate Evaluate   , where R is the region enclosed by the ellipse   . , where R is the region enclosed by the ellipse Evaluate   , where R is the region enclosed by the ellipse   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
26
Compute the Jacobian of the transformation T given by Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T. , Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T. , and find the image of Compute the Jacobian of the transformation T given by   ,   , and find the image of   under T. under T.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
27
Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane. Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . (b) Find the inverse transformation Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . .(c) Evaluate the double integral Let T be the transformation given by x = 2u + v, y = 3u.(a) A region S in the uv-plane is given below. Sketch the image R of S in the xy-plane.   (b) Find the inverse transformation   .(c) Evaluate the double integral   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
28
Compute the Jacobian of the transformation T given by Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S. , Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S. . Compute the area of the image of Compute the Jacobian of the transformation T given by   ,   . Compute the area of the image of   and compare it to the area of S. and compare it to the area of S.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
29
Evaluate Evaluate   , where E is the solid bounded by the ellipsoid   . , where E is the solid bounded by the ellipsoid Evaluate   , where E is the solid bounded by the ellipsoid   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
30
Describe the image R of the set Describe the image R of the set   under the transformation   ,   , and then compute   . under the transformation Describe the image R of the set   under the transformation   ,   , and then compute   . , Describe the image R of the set   under the transformation   ,   , and then compute   . , and then compute Describe the image R of the set   under the transformation   ,   , and then compute   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
31
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
32
Evaluate the iterated integral 0x/20x/201ρ3sinϕcosϕdρdϕdθ\int _ { 0 } ^ { x / 2 } \int _ { 0 } ^ { x / 2 } \int _ { 0 } ^ { 1 } \rho ^ { 3 } \sin \phi \cos \phi d \rho d \phi d \theta .

A) π8\frac { \pi } { 8 }

B) π4\frac { \pi } { 4 }

C) π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) π6\frac { \pi } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
33
Evaluate the iterated integral 02x011y24r2dzdrdθ\int _ { 0 } ^ { 2 x } \int _ { 0 } ^ { 1 } \int _ { 1 - y ^ { 2 } } ^ { 4 } r ^ { 2 } d z d r d \theta .

A) π5\frac { \pi } { 5 }

B) 7π5\frac { 7 \pi } { 5 }

C)4 π\pi

D)12 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) 12π3\frac { 12 \pi } { 3 }

H) 12π5\frac { 12 \pi } { 5 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
34
Use the change of variables Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   . , Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   . , Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   . to evaluate Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   . , where E is the solid enclosed by the ellipsoid Use the change of variables   ,   ,   to evaluate   , where E is the solid enclosed by the ellipsoid   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
35
Evaluate Evaluate   ,where R is the rectangular region bounded by the lines x + y = 0, x + y = 1, x - y = 0, and x - y = 1. ,where R is the rectangular region bounded by the lines x + y = 0, x + y = 1, x - y = 0, and x - y = 1.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
36
Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane. Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.    Find a transformation x = x (u, v), y = y (u, v) maps the region in the uv-plane into the xy-plane.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
37
Evaluate the triple integral ErdV\iiint _ { E } r d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θ2π,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq 2 \pi , 0 \leq z \leq 1 \} .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
38
Evaluate the triple integral E1dV\iiint _ { E } 1 d V in cylindrical coordinates, where E={(r,θ,z)0r1,0θπ,0z1}E = \{ ( r , \theta , z ) \mid 0 \leq r \leq 1,0 \leq \theta \leq \pi , 0 \leq z \leq 1 \} .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi

Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
39
Evaluate Evaluate   by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse   . by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse Evaluate   by making an appropriate change of variables, where R is the region in the first quadrant bounded by the ellipse   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
40
Compute the Jacobian of the transformation T given by x=vcos2πux = v \cos 2 \pi u , y=vsin2πuy = v \sin 2 \pi u . Describe the image of S={(u,v)0u1,0v1}S = \{ ( u , v ) \mid 0 \leq u \leq 1,0 \leq v \leq 1 \} , and compute its area.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
41
A sphere of radius k has a volume of A sphere of radius k has a volume of   . Set up the iterated integrals in rectangular, cylindrical, and spherical coordinates to show this. . Set up the iterated integrals in rectangular, cylindrical, and spherical coordinates to show this.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
42
Evaluate the triple integral Ex2+y2+z2dV\iiint _ { E } \sqrt { x ^ { 2 } + y ^ { 2 } + z ^ { 2 } } d V in spherical coordinates, where E is the solid bounded by the hemisphere z=4x2y2z = \sqrt { 4 - x ^ { 2 } - y ^ { 2 } } and the plane z = 0.

A) π4\frac { \pi } { 4 }

B)16 π\pi

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F)8 π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi


Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
43
Evaluate Evaluate   , where E is the solid bounded by the sphere   . , where E is the solid bounded by the sphere Evaluate   , where E is the solid bounded by the sphere   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
44
Find the volume bounded above by the surface Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   . , Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   . , below by the xy-plane, and laterally by the cylinder Find the volume bounded above by the surface   ,   , below by the xy-plane, and laterally by the cylinder   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
45
Use cylindrical coordinates to find Use cylindrical coordinates to find   , where R is the region bounded by   and   . , where R is the region bounded by Use cylindrical coordinates to find   , where R is the region bounded by   and   . and Use cylindrical coordinates to find   , where R is the region bounded by   and   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
46
Find the mass of the solid that occupies the region bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 , z = 2, and z = 0 and has density function ρ(x,y,z)=z\rho ( x , y , z ) = z .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
47
Evaluate Evaluate   by changing to cylindrical coordinates. by changing to cylindrical coordinates.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
48
Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V , where E={(x,y,z)x2+y2+z21}E = \left\{ ( x , y , z ) \mid x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \leq 1 \right\} .

A) 2π3\frac { 2 \pi } { 3 }

B) 2π5\frac { 2 \pi } { 5 }

C) 4π3\frac { 4 \pi } { 3 }

D) 4π5\frac { 4 \pi } { 5 }

E)2 π\pi

F) 6π5\frac { 6 \pi } { 5 }

G) 8π3\frac { 8 \pi } { 3 }

H) 8π5\frac { 8 \pi } { 5 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
49
Evaluate Evaluate   by changing to spherical coordinates. by changing to spherical coordinates.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
50
Find the volume of the region above the paraboloid Find the volume of the region above the paraboloid   and below the hemisphere   . and below the hemisphere Find the volume of the region above the paraboloid   and below the hemisphere   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
51
Evaluate the iterated integral 0π/20π/201ρ2sinϕdρdϕdθ\int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { \pi / 2 } \int _ { 0 } ^ { 1 } \rho ^ { 2 } \sin \phi d \rho d \phi d \theta .

A) π6\frac { \pi } { 6 }

B) π4\frac { \pi } { 4 }

C)4 π\pi

D)2 π\pi

E) π16\frac { \pi } { 16 }

F) π2\frac { \pi } { 2 }

G) π3\frac { \pi } { 3 }

H) 4π3\frac { 4 \pi } { 3 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
52
Evaluate the triple integral E(x2+y2+z2)dV\iiint _ { E } \left( x ^ { 2 } + y ^ { 2 } + z ^ { 2 } \right) d V in spherical coordinates, where E is the solid in the first octant bounded by the sphere x2+y2+z2=4x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = 4 and the coordinate planes.

A) 32π5\frac { 32 \pi } { 5 }

B) 4π5\frac { 4 \pi } { 5 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 16π5\frac { 16 \pi } { 5 }

F) π\pi

G) 4π3\frac { 4 \pi } { 3 }

H)2 π\pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
53
Find the mass of the solid that occupies the region bounded by the paraboloid z=x2+y2z = x ^ { 2 } + y ^ { 2 } and the plane z = 1 and has density function ρ(x,y,z)=x2+y2\rho ( x , y , z ) = \sqrt { x ^ { 2 } + y ^ { 2 } } .

A) π4\frac { \pi } { 4 }

B) π3\frac { \pi } { 3 }

C) π2\frac { \pi } { 2 }

D) 2π3\frac { 2 \pi } { 3 }

E) 3π4\frac { 3 \pi } { 4 }

F) π\pi

G) 4π15\frac { 4 \pi } { 15 }

H)2 π\pi
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
54
Find the mass of that portion of the solid bounded above by the sphere Find the mass of that portion of the solid bounded above by the sphere   which lies in the first octant, if the density varies as the distance from the center of the sphere. which lies in the first octant, if the density varies as the distance from the center of the sphere.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
55
A region W in A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. is described completely by A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. , A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. , A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. , and A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. .(a) Describe or sketch this region. A region W in   is described completely by   ,   ,   , and   .(a) Describe or sketch this region.   (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral. (b) Write an integral in rectangular coordinates which gives the volume of W. Do not work out this integral.(c) Write an integral in spherical coordinates which gives the volume of W. Find the volume of W using this integral.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
56
Evaluate Evaluate   by changing to spherical coordinates. by changing to spherical coordinates.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
57
Evaluate Evaluate   , where E is the solid bounded by the sphere   and the cone   . , where E is the solid bounded by the sphere Evaluate   , where E is the solid bounded by the sphere   and the cone   . and the cone Evaluate   , where E is the solid bounded by the sphere   and the cone   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
58
Use a triple integral in spherical coordinates to find the volume of that part of the sphere Use a triple integral in spherical coordinates to find the volume of that part of the sphere   which lies inside the cone   . which lies inside the cone Use a triple integral in spherical coordinates to find the volume of that part of the sphere   which lies inside the cone   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
59
Let E be the solid that lies below the sphere x2+y2+z2=a2x ^ { 2 } + y ^ { 2 } + z ^ { 2 } = a ^ { 2 } and above the cone ϕ=β\phi = \beta , where 0<β<π20 < \beta < \frac { \pi } { 2 } . Find the value of the triple integral EzdV\iiint _ { E } z d V .

A) πa2sinβ\pi a ^ { 2 } \sin \beta

B). 12πa2sinβ\frac { 1 } { 2 } \pi a ^ { 2 } \sin \beta
C) πa2sin2β\pi a ^ { 2 } \sin ^ { 2 } \beta
D) 12πa2sin2β\frac { 1 } { 2 } \pi a ^ { 2 } \sin ^ { 2 } \beta
E) 14πa2sin2β\frac { 1 } { 4 } \pi a ^ { 2 } \sin ^ { 2 } \beta
F) 12πα4sin2β\frac { 1 } { 2 } \pi \alpha ^ { 4 } \sin ^ { 2 } \beta


G) 14πa4sin2β\frac { 1 } { 4 } \pi a ^ { 4 } \sin ^ { 2 } \beta

H) πa4sinβ\pi a ^ { 4 } \sin \beta
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
60
Find the volume of the region inside the cylinder Find the volume of the region inside the cylinder   which is bounded below by the xy-plane and above by the sphere   . which is bounded below by the xy-plane and above by the sphere Find the volume of the region inside the cylinder   which is bounded below by the xy-plane and above by the sphere   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
61
Evaluate the iterated integral 0In40In30In2e05x+yzdzdydx\int _ { 0 } ^ { \mathrm { In } 4 } \int _ { 0 } ^ { \mathrm { In } 3 } \int _ { 0 } ^ { \mathrm { In } 2 } e ^ { 05 x + y - z } d z d y d x .

A)6
B)1
C)3
D)2
E)-6
F)-1
G)-3
H)-2
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
62
Evaluate the iterated integral 010x0yydxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y } y d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
63
Give a geometric description of the solid S whose volume in cylindrical coordinates is given by Give a geometric description of the solid S whose volume in cylindrical coordinates is given by   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
64
Find the mass of the solid that occupies the region E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} and has density function ρ(x,y,z)=x\rho ( x , y , z ) = x .

A) 16\frac { 1 } { 6 }

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 34\frac { 3 } { 4 }

G) 56\frac { 5 } { 6 }

H)1
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
65
Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is Find the mass of a solid ball of radius 2 if the density at each point (x, y, z) is   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
66
Evaluate the iterated integral 02010x6xy2sinzdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } 6 x y ^ { 2 } \sin z d z d y d x .

A) 2\sqrt { 2 }
B)2
C)4
D)16
E)12
F) 222 \sqrt { 2 }
G)48
H)8
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
67
Evaluate the iterated integral 010x0y2dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y ^ { 2 } } d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
68
Evaluate the iterated integral 01x3xyx2zdzdydx\int _ { 0 } ^ { 1 } \int _ { x } ^ { 3 x } \int _ { \sqrt { y } } ^ { x } 2 z d z d y d x .

A) 512- \frac { 5 } { 12 }

B) 56- \frac { 5 } { 6 }
C) 112- \frac { 1 } { 12 }
D) 16- \frac { 1 } { 6 }
E)
512\frac { 5 } { 12 }
F) 56\frac { 5 } { 6 }

G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
69
Let E be the part of the solid ellipsoid Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates. that lies in the first octant above
the plane z = 1.(a) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates. as an iterated integral in rectangular coordinates.(b) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates. as an iterated integral in cylindrical coordinates.(c) Express the triple integral Let E be the part of the solid ellipsoid   that lies in the first octant above the plane z = 1.(a) Express the triple integral   as an iterated integral in rectangular coordinates.(b) Express the triple integral   as an iterated integral in cylindrical coordinates.(c) Express the triple integral   as an iterated integral in spherical coordinates. as an iterated integral in spherical coordinates.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
70
Evaluate the triple integral ExdV\iiint _ { E } x d V , where E={(x,y,z)0xy,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq y , 0 \leq y \leq 1,0 \leq z \leq 1 \} .

A) 16\frac { 1 } { 6 }

B) 14\frac { 1 } { 4 }
C) 13\frac { 1 } { 3 }
D) 12\frac { 1 } { 2 }
E) 23\frac { 2 } { 3 }
F) 112\frac { 1 } { 12 }

G) 56\frac { 5 } { 6 }

H)1
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
71
Evaluate the iterated integral 010x0ydxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y } d x d y d z .

A) 1120\frac { 1 } { 120 }

B) 190\frac { 1 } { 90 }
C) 160\frac { 1 } { 60 }
D) 148\frac { 1 } { 48 }
E) 136\frac { 1 } { 36 }
F) 124\frac { 1 } { 24 }
G) 112\frac { 1 } { 12 }

H) 16\frac { 1 } { 6 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
72
Sketch the region E whose volume is given by the integral Sketch the region E whose volume is given by the integral   .  . Sketch the region E whose volume is given by the integral   .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
73
Evaluate the triple integral EydV\iiint _ { E } y d V , where E is the solid bounded by the coordinate planes and the plane 2x + y + z = 4.

A)1
B) 316\frac { 3 } { 16 }
C) 83\frac { 8 } { 3 }
D) 38\frac { 3 } { 8 }
E) 23\frac { 2 } { 3 }
F) 163\frac { 16 } { 3 }
G) 323\frac { 32 } { 3 }
H) 332\frac { 3 } { 32 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
74
Evaluate Evaluate   , where E is the solid bounded by the cylinder   , above by z = 3 and below by z = 0. , where E is the solid bounded by the cylinder Evaluate   , where E is the solid bounded by the cylinder   , above by z = 3 and below by z = 0. , above by z = 3 and below by z = 0.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
75
Let E be the solid bounded above by the sphere Let E be the solid bounded above by the sphere   and below by the cone   .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates. and below by the cone Let E be the solid bounded above by the sphere   and below by the cone   .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates. .(a) Express the volume of E as an iterated integral in rectangular coordinates.(b) Express the volume of E as an iterated integral in cylindrical coordinates.(c) Express the volume of E as an iterated integral in spherical coordinates.
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
76
Evaluate the iterated integral 0x/4020x2xcos(2y)dzdxdy\int _ { 0 } ^ { x / 4 } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { x ^ { 2 } } x \cos ( 2 y ) d z d x d y .

A)0
B)8
C)4
D)16
E)6
F)2
G)5
H)1
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
77
Evaluate the triple integral EzdV\iiint _ { E } z d V , where E is the wedge in the first octant bounded by y2+z2=1y ^ { 2 } + z ^ { 2 } = 1 , y = x, and the yz-plane.

A) 14\frac { 1 } { 4 }

B) 18\frac { 1 } { 8 }
C) 12\frac { 1 } { 2 }
D) 23\frac { 2 } { 3 }
E) 34\frac { 3 } { 4 }
F)1
G) 54\frac { 5 } { 4 }

H) 43\frac { 4 } { 3 }
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
78
Evaluate the triple integral E(x+2y)dV\iiint _ { E } ( x + 2 y ) d V , where E={(x,y,z)0x1,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1 \} .

A) 14\frac { 1 } { 4 }

B) 12\frac { 1 } { 2 }
C) 34\frac { 3 } { 4 }
D)1
E) 54\frac { 5 } { 4 }
F) 32\frac { 3 } { 2 }

G) 74\frac { 7 } { 4 }
H)2
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
79
Evaluate the iterated integral 110201x2+y2+z2dxdydz\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } x ^ { 2 } + y ^ { 2 } + z ^ { 2 } d x d y d z .

A) 113\frac { 11 } { 3 }
B)8

C)4
D)16
E) 116\frac { 11 } { 6 }
F)2
G)5
H)1
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
80
Give a geometric description of the solid S whose volume in spherical coordinates is given by Give a geometric description of the solid S whose volume in spherical coordinates is given by   . .
Unlock Deck
Unlock for access to all 270 flashcards in this deck.
Unlock Deck
k this deck
locked card icon
Unlock Deck
Unlock for access to all 270 flashcards in this deck.