Exam 12: Multiple Integrals

arrow
  • Select Tags
search iconSearch Question
  • Select Tags

Evaluate the iterated integral 02010x6xy2sinzdzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } 6 x y ^ { 2 } \sin z d z d y d x .

Free
(Multiple Choice)
4.9/5
(33)
Correct Answer:
Verified

H

Use polar coordinates to combine the sum 224x2xxydydx+2220xxydydx+224016x2xydydx\int _ { \sqrt { 2 } } ^ { 2 } \int _ { \sqrt { 4 - x ^ { 2 } } } ^ { x } x y d y d x + \int _ { 2 } ^ { 2 \sqrt { 2 } } \int _ { 0 } ^ { x } x y d y d x + \int _ { 2 \sqrt { 2 } } ^ { 4 } \int _ { 0 } ^ { \sqrt { 16 - x ^ { 2 } } } x y d y d x into one double integral. Then evaluate the integral.

Free
(Essay)
4.8/5
(28)
Correct Answer:
Verified

0x/424r3sinθcosθdrdθ=15\int _ { 0 } ^ { x / 4 } \int _ { 2 } ^ { 4 } r ^ { 3 } \sin \theta \cos \theta d r d \theta = 15

Suppose the volume of a solid is given by V=030(3z)/204x2dydxdzV = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { ( 3 - z ) / 2 } \int _ { 0 } ^ { 4 - x ^ { 2 } } d y d x d z .(a) Sketch the solid whose volume is given by V .  Suppose the volume of a solid is given by  V = \int _ { 0 } ^ { 3 } \int _ { 0 } ^ { ( 3 - z ) / 2 } \int _ { 0 } ^ { 4 - x ^ { 2 } } d y d x d z  .(a) Sketch the solid whose volume is given by V .   (b) Evaluate the integral to find the volume of the solid. (b) Evaluate the integral to find the volume of the solid.

Free
(Essay)
4.8/5
(44)
Correct Answer:
Verified

(a)  (a)   (b)  \frac { 261 } { 32 } (b) 26132\frac { 261 } { 32 }

Find the x-coordinate of the center of mass of the lamina that occupies the part of the disk x2+y21x ^ { 2 } + y ^ { 2 } \leq 1 in the first quadrant and has density function p(x, y) = xy.

(Multiple Choice)
4.8/5
(36)

Find the area of the surface cut from the cone z=1x2+y2z = 1 - \sqrt { x ^ { 2 } + y ^ { 2 } } by the cylinder x2+y2=yx ^ { 2 } + y ^ { 2 } = y .

(Short Answer)
4.8/5
(39)

Write Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral in polar coordinates, where R is the region shown below.  Write  \iint _ { R } f ( x , y ) d A  as an iterated integral in polar coordinates, where R is the region shown below.

(Essay)
4.7/5
(29)

Evaluate the iterated integral 1201x4ydydx\int _ { - 1 } ^ { 2 } \int _ { 0 } ^ { 1 - x } 4 - y d y d x .

(Multiple Choice)
4.9/5
(27)

Let f(x,y)=x2f ( x , y ) = x ^ { 2 } , and let R={(x,y)0x1,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} . Let R be partitioned into two subrectangles by the line x=12x = \frac { 1 } { 2 } , and let (xi,yj)\left( x _ { i } ^ { * } , y _ { j } ^ { * } \right) be the center of Rij. Calculate the double Riemann sum of f.

(Multiple Choice)
4.9/5
(34)

Rewrite the integral 1101y2xdxdy\int _ { - 1 } ^ { 1 } \int _ { 0 } ^ { \sqrt { 1 - y ^ { 2 } } } x d x d y in terms of polar coordinates, then evaluate the integral.

(Essay)
4.8/5
(28)

Evaluate 0204x204x2y2x2dzdydx\int _ { 0 } ^ { 2 } \int _ { 0 } ^ { \sqrt { 4 - x ^ { 2 } } } \int _ { 0 } ^ { 4 - x ^ { 2 } - y ^ { 2 } } x ^ { 2 } d z d y d x by changing to cylindrical coordinates.

(Essay)
4.9/5
(38)

Find the area of the part of the cone 4x2+4y2=z24 x ^ { 2 } + 4 y ^ { 2 } = z ^ { 2 } that is above the region in the first quadrant bounded by the line y = x and the parabola y=x2y = x ^ { 2 } .

(Multiple Choice)
4.8/5
(38)

Find the mass of the solid that occupies the region bounded by x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 , z = 2, and z = 0 and has density function ρ(x,y,z)=z\rho ( x , y , z ) = z .

(Multiple Choice)
4.8/5
(35)

Let f(x,y)=xyf ( x , y ) = x y , and let R={(x,y)0x1,0y1}R = \{ ( x , y ) \mid 0 \leq x \leq 1,0 \leq y \leq 1 \} . Let R be partitioned into four subrectangles by the lines x=12x = \frac { 1 } { 2 } and y=12y = \frac { 1 } { 2 } , and let (xi,yj)\left( x _ { i } ^ { * } , y _ { j } ^ { * } \right) be the upper right corner of Rij. Calculate the double Riemann sum of f.

(Multiple Choice)
4.8/5
(32)

Rewrite Rf(x,y)dA\iint _ { R } f ( x , y ) d A as an iterated integral with x as the variable of integration in the outer integral, where R is the region shown below.  Rewrite  \iint _ { R } f ( x , y ) d A  as an iterated integral with x as the variable of integration in the outer integral, where R is the region shown below.

(Essay)
4.9/5
(36)

Compute the Riemann sum for the double integral R4dA\iint _ { R } 4 d A where R=[0,6]×[0,2]R = [ 0,6 ] \times [ 0,2 ] for the given grid and choice of sample points.  Compute the Riemann sum for the double integral  \iint _ { R } 4 d A  where  R = [ 0,6 ] \times [ 0,2 ]  for the given grid and choice of sample points.

(Short Answer)
4.8/5
(41)

Evaluate the iterated integral 010x0y2dxdydz\int _ { 0 } ^ { 1 } \int _ { 0 } ^ { x } \int _ { 0 } ^ { y ^ { 2 } } d x d y d z .

(Multiple Choice)
4.9/5
(38)

Evaluate Dcos(x2+y2)dA\iint _ { D } \cos \left( x ^ { 2 } + y ^ { 2 } \right) d A , where D={(x,y)x2+y21}D = \left\{ ( x , y ) \mid x ^ { 2 } + y ^ { 2 } \leq 1 \right\} , the unit disk.

(Short Answer)
4.9/5
(32)

Find the surface area of the surface z = xy inside the cylinder x2+y2=1x ^ { 2 } + y ^ { 2 } = 1 .

(Essay)
4.7/5
(39)

Evaluate the triple integral ExdV\iiint _ { E } x d V , where E={(x,y,z)0xy,0y1,0z1}E = \{ ( x , y , z ) \mid 0 \leq x \leq y , 0 \leq y \leq 1,0 \leq z \leq 1 \} .

(Multiple Choice)
4.6/5
(33)

Find the Jacobian of the transformation x = 3u + v, y = u - 2w, z = v + w.

(Multiple Choice)
4.8/5
(32)
Showing 1 - 20 of 270
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)