Exam 8: Trigonometric Identities and Equations

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

For the graph of a circular function y = f(x), determine whether f(-x) = f(x) or f(-x) = -f(x) is true. -For the graph of a circular function y = f(x), determine whether f(-x) = f(x) or f(-x) = -f(x) is true. -

Free
(Multiple Choice)
4.8/5
(29)
Correct Answer:
Verified

A

Solve the problem. - cot2u2=cscu+cotucscucotu\cot ^ { 2 } \frac { u } { 2 } = \frac { \csc u + \cot u } { \csc u - \cot u }

Free
(Essay)
4.8/5
(32)
Correct Answer:
Verified

cot2u2=1tan2u2=1+cosu1cosu=cscu+cotucscucotu\cot ^ { 2 } \frac { u } { 2 } = \frac { 1 } { \tan ^ { 2 } \frac { u } { 2 } } = \frac { 1 + \cos u } { 1 - \cos u } = \frac { \csc u + \cot u } { \csc u - \cot u }

Write the following as an algebraic expression in u, u > 0. -The figure shows a stationary spy satellite positioned 15,000 miles above the equator. What percel to the nearest tenth, of the equator can be seen from the satellite? The diameter of Earth is 7927 miles at the equator. Write the following as an algebraic expression in u, u > 0. -The figure shows a stationary spy satellite positioned 15,000 miles above the equator. What percel to the nearest tenth, of the equator can be seen from the satellite? The diameter of Earth is 7927 miles at the equator.

Free
(Multiple Choice)
4.7/5
(35)
Correct Answer:
Verified

B

Find the exact value by using a half-angle identity. - cos22.5\cos 22.5 ^ { \circ }

(Multiple Choice)
4.8/5
(31)

Provide an appropriate response. -Explain what is wrong with the following solution for the equation sin2θ=3\sin 2 \theta = \sqrt { 3 } in the interval [0,2π)[ 0,2 \pi ) . 2\theta= \theta= \theta= or \theta=

(Essay)
4.9/5
(40)

Use a sum or difference identity to find the exact value. - tan7π12\tan \frac { 7 \pi } { 12 }

(Multiple Choice)
4.9/5
(39)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) - 23sin4x=32 \sqrt { 3 } \sin 4 x = 3

(Multiple Choice)
4.8/5
(46)

Write the expression in terms of sine and cosine, and simplify so that no quotients appear in the final expression. - 1+tan2xsecx\frac { 1 + \tan ^ { 2 } x } { \sec x }

(Multiple Choice)
4.9/5
(39)

Solve the equation for solutions in the interval [0 [0,360)\left[ 0 ^ { \circ } , 360 ^ { \circ } \right) ). Round to the nearest degree. - sin2θ+cos2θ=1\sin 2 \theta + \cos 2 \theta = 1

(Multiple Choice)
4.8/5
(39)

Give the degree measure of θ\theta - θ=arccos(0)\theta = \arccos ( 0 )

(Multiple Choice)
4.9/5
(39)

Solve the equation for solutions in the interval [0, 2 [0,2π)[ 0,2 \pi ) - cos2x=2cos2x\cos 2 x = \sqrt { 2 } - \cos 2 x

(Multiple Choice)
4.8/5
(28)

Find the exact value of the expression using the provided information. -Find sin(s+t)\sin ( \mathrm { s } + \mathrm { t } ) given that coss=12\cos \mathrm { s } = - \frac { 1 } { 2 } , with s\mathrm { s } in quadrant III, and cost=35\cos \mathrm { t } = - \frac { 3 } { 5 } , with t\mathrm { t } in quadrant III.

(Multiple Choice)
4.9/5
(44)

Find the exact value of the expression using the provided information. -Find sin(st)\sin ( s - t ) given that coss=13\cos s = \frac { 1 } { 3 } , with ss in quadrant II , and sint=12\sin t = - \frac { 1 } { 2 } , with tt in quadrant IV.

(Multiple Choice)
4.9/5
(38)

Use an identity to write the expression as a single trigonometric function or as a single number. - 1cos622\sqrt { \frac { 1 - \cos 62 ^ { \circ } } { 2 } }

(Multiple Choice)
4.8/5
(38)

Use identities to write the expression as a single function of x or θ\theta - cos(θ+π2)\cos \left( \theta + \frac { \pi } { 2 } \right)

(Multiple Choice)
4.7/5
(29)

Solve the equation for solutions in the interval [0 [0,360)\left[ 0 ^ { \circ } , 360 ^ { \circ } \right) ). Round to the nearest degree. - cotθ3=1\cot \frac { \theta } { 3 } = 1

(Multiple Choice)
4.9/5
(37)

Use the fundamental identities to find the value of the trigonometric function. -Find tanθ\tan \theta if cosθ=14\cos \theta = \frac { 1 } { 4 } and θ\theta is in quadrant IV.

(Multiple Choice)
4.9/5
(32)

Find the exact value of the real number y. - y=tan1(1)y = \tan ^ { - 1 } ( 1 )

(Multiple Choice)
4.8/5
(36)

Determine all solutions of the equation in radians. -Find sinx2\sin \frac { x } { 2 } , given that sinx=14\sin x = \frac { 1 } { 4 } and xx terminates in 0<x<π20 < x < \frac { \pi } { 2 } .

(Multiple Choice)
4.8/5
(40)

Use a graphing calculator to make a conjecture as to whether each equation is an identity. - (sinx+cosx)2=1( \sin x + \cos x ) ^ { 2 } = 1

(Multiple Choice)
5.0/5
(37)
Showing 1 - 20 of 492
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)