Exam 10: Binomial Expansions, Sequences, and Series

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the sum. j=16j+3j\sum _ { j = 1 } ^ { 6 } \frac { j + 3 } { j }

(Multiple Choice)
5.0/5
(35)

List the terms of the sequence. an=n(n3+9),1n4a _ { n } = n \left( n ^ { 3 } + 9 \right) , 1 \leq n \leq 4

(Multiple Choice)
4.8/5
(43)

A home purchased for $105,000 increases by 3% of its value each year. The value of the home after n years is given by an=105,000(1.03)n for n1a _ { n } = 105,000 ( 1.03 ) ^ { n } \text { for } n \geq 1 Find the value of the home after 5 years by computing a5a _ { 5 } . Round to the nearest dollar.

(Multiple Choice)
4.9/5
(37)

Determine the sum of the infinite series, if it exists. 28+7+(74)+716+- 28 + 7 + \left( - \frac { 7 } { 4 } \right) + \frac { 7 } { 16 } + \ldots

(Multiple Choice)
4.8/5
(43)

Use the binomial theorem to expand the binomial. (4xy)4( 4 x - y ) ^ { 4 }

(Multiple Choice)
4.8/5
(40)

Find the nth term of the geometric sequence. -8, 16, -32, 64, ...

(Multiple Choice)
4.9/5
(36)

Find a formula for the nth term of the sequence. 8,16,24,32,8,16,24,32 , \ldots

(Multiple Choice)
4.8/5
(43)

Find the indicated term of the geometric sequence. Given a8=768a _ { 8 } = - 768 and r=2r = 2 , find a1a _ { 1 } .

(Multiple Choice)
4.8/5
(40)

Write the first five terms of the arithmetic sequence. a1=2,d=23a _ { 1 } = 2 , d = \frac { 2 } { 3 }

(Multiple Choice)
4.9/5
(41)

List the terms of the sequence. an=(1)nn+1n6,1n4a _ { n } = ( - 1 ) ^ { n } \frac { n + 1 } { n - 6 } , 1 \leq n \leq 4

(Multiple Choice)
4.9/5
(36)

Expand the binomial. Use Pascal's triangle to find the coefficients. (x5+y)6\left( x ^ { 5 } + y \right) ^ { 6 }

(Multiple Choice)
4.9/5
(32)

Find the sum. j=15j(j+8)\sum _ { j = 1 } ^ { 5 } j ( j + 8 )

(Multiple Choice)
5.0/5
(39)

Find the common difference d for the arithmetic sequence. 4, -5, -14, -23, -32, ...

(Multiple Choice)
4.8/5
(36)

Find the common difference d for the arithmetic sequence. -4, 4, 12, 20, 28, ...

(Multiple Choice)
4.9/5
(35)

Find the indicated term of the geometric sequence. Given an=8(2)n1a _ { n } = 8 ( - 2 ) ^ { n - 1 } , find a5a _ { 5 } .

(Multiple Choice)
4.9/5
(38)

Rewrite the binomial of the form (ab)n( a - b ) ^ { n } as [a+(b)]n[ a + ( - b ) ] ^ { n } . Then expand the binomial. Use Pascal's triangle to find the coefficients. (4y4)5\left( 4 - y ^ { 4 } \right) ^ { 5 }

(Multiple Choice)
4.7/5
(28)

Write the series in summation notation. 8+16+24+32+408 + 16 + 24 + 32 + 40

(Multiple Choice)
4.9/5
(36)

Use the binomial theorem to expand the binomial. (a4b)5\left( \frac { a } { 4 } - b \right) ^ { 5 }

(Multiple Choice)
4.7/5
(41)

Find the sum of the geometric series. 7 + (-14) + 28 + (-56) + 112

(Multiple Choice)
4.9/5
(28)

Determine the common ratio, r, for the geometric sequence. -6, 24, -96, 384, ...

(Multiple Choice)
4.7/5
(29)
Showing 21 - 40 of 60
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)