Exam 14: Sequences, Series, and the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the first four terms of the given sequence. - a1=2,an=2an1a _ { 1 } = - 2 , a _ { n } = 2 \cdot a _ { n } - 1

(Multiple Choice)
4.8/5
(35)

Find the general term an of the given sequence. - 3,9,27,81,243,3,9,27,81,243 , \ldots

(Multiple Choice)
4.9/5
(25)

For the given geometric sequence, find the limit of the infinite series, if it exists. - 23(13)n1\frac { 2 } { 3 } \cdot \left( - \frac { 1 } { 3 } \right) ^ { n - 1 }

(Multiple Choice)
4.9/5
(34)

Solve the problem. -A ball is dropped from a height of 53 feet. On each bounce, it bounces to 72% of its previous height. How high does it get after the 4th bounce? (Round to the nearest hundredth, if necessary.)

(Multiple Choice)
4.8/5
(40)

Find the indicated partial sum for the given geometric sequence. -s8 Find the indicated partial sum for the given geometric sequence. -s8

(Multiple Choice)
4.8/5
(34)

Find the first four terms of the given sequence. - a1=9,an=an1+3a _ { 1 } = 9 , a _ { n } = a _ { n } - 1 + 3

(Multiple Choice)
4.9/5
(36)

Find the sum. - i=14i+1i+2\sum _ { i = 1 } ^ { 4 } \frac { i + 1 } { i + 2 }

(Multiple Choice)
4.7/5
(36)

Find the indicated partial sum for the sequence with the given general term. - s10,an=(1)n\mathrm { s } 10 , \mathrm { a } _ { \mathrm { n } } = ( - 1 ) ^ { \mathrm { n } }

(Multiple Choice)
4.9/5
(47)

Find the general term, an, of the given geometric sequence. - 49,7,1,49,7,1 , \ldots

(Multiple Choice)
4.8/5
(28)

Evaluate the given binomial coefficient. - 12C11{ } _ { 12 } \mathrm { C } _ { 11 }

(Multiple Choice)
4.7/5
(34)

Find the partial sum of the geometric sequence with the given first term and common ratio. - 9,a1=14,r=39 , a _ { 1 } = \frac { 1 } { 4 } , r = - 3

(Multiple Choice)
4.8/5
(43)

Find the partial sum of the geometric sequence with the given first term and common ratio. - s13,a1=4,r=3\mathrm { s } 13 , \mathrm { a } _ { 1 } = 4 , \mathrm { r } = 3

(Multiple Choice)
4.9/5
(42)

For the given geometric sequence, find the limit of the infinite series, if it exists. --2, 2, -2, 2, . . .

(Multiple Choice)
4.8/5
(35)

Write the sum using summation notation. - 30+42+54+66+7830 + 42 + 54 + 66 + 78

(Multiple Choice)
4.9/5
(31)

Find the indicated partial sum for the sequence with the given general term. - s6,an=3n+6s 6 , a _ { n } = - 3 n + 6

(Multiple Choice)
4.9/5
(38)

Find the common ratio, r, for the geometric sequence. - 43,83,163,323,643,\frac { 4 } { 3 } , \frac { 8 } { 3 } , \frac { 16 } { 3 } , \frac { 32 } { 3 } , \frac { 64 } { 3 } , \ldots

(Multiple Choice)
4.8/5
(43)

Simplify. - 8!0!8!\frac { 8 ! } { 0 ! \cdot 8 ! }

(Multiple Choice)
4.8/5
(43)

Expand using the binomial theorem. - (x9y)5( x - 9 y ) ^ { 5 }

(Multiple Choice)
4.9/5
(22)

Write the sum using summation notation. - 14+19+24+29+3414 + 19 + 24 + 29 + 34

(Multiple Choice)
4.9/5
(33)

Find the indicated partial sum for the given sequence. -Find the sum of the first 250 odd positive integers.

(Multiple Choice)
4.9/5
(39)
Showing 81 - 100 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)