Exam 14: Sequences, Series, and the Binomial Theorem

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the first five terms of the sequence with the given general term. - an=1n2a _ { n } = \frac { 1 } { n ^ { 2 } }

(Multiple Choice)
4.9/5
(37)

Find the general term, an, of the given geometric sequence. - 19,59,259,\frac { 1 } { 9 } , \frac { 5 } { 9 } , \frac { 25 } { 9 } , \ldots

(Multiple Choice)
4.8/5
(38)

Find the general term, an, of the given geometric sequence. - 2,14,132,2 , \frac { 1 } { 4 } , \frac { 1 } { 32 } , \ldots

(Multiple Choice)
4.9/5
(37)

Find the partial sum of the geometric sequence with the given first term and common ratio. -s9 Find the partial sum of the geometric sequence with the given first term and common ratio. -s9

(Multiple Choice)
4.8/5
(38)

Find the indicated partial sum for the given sequence. - s5,12,14,18,116,\mathrm { s } 5 , - \frac { 1 } { 2 } , \frac { 1 } { 4 } , - \frac { 1 } { 8 } , \frac { 1 } { 16 } , \ldots

(Multiple Choice)
4.8/5
(24)

Simplify. -10!

(Multiple Choice)
4.9/5
(31)

Find the indicated term for the sequence. -Find the 6th 6 ^ { \text {th } } term of the sequence whose general term is an=4(2n1)a _ { n } = 4 ( 2 n - 1 ) .

(Multiple Choice)
4.8/5
(37)

Solve the problem. -To train for a race, Will begins by jogging 12 minutes one day per week. He increases his jogging time by 5 minutes each week. Write the general term of this arithmetic sequence, and find how Many weeks it takes for him to reach a jogging time of one hour.

(Multiple Choice)
4.8/5
(35)

Solve the problem. -A town has a population of 2000 people and is increasing by 9% every year. What will the population be at the end of 8 years?

(Multiple Choice)
4.9/5
(31)

Find the sum. - i=14(i25i3)\sum _ { i = 1 } ^ { 4 } \left( i ^ { 2 } - 5 i - 3 \right)

(Multiple Choice)
4.8/5
(35)

Find the first five terms of the sequence with the given general term. - an=4na _ { n } = 4 ^ { n }

(Multiple Choice)
4.7/5
(37)

Find the common ratio, r, for the geometric sequence. - 3,34,316,364,3256,3 , \frac { 3 } { 4 } , \frac { 3 } { 16 } , \frac { 3 } { 64 } , \frac { 3 } { 256 } , \ldots

(Multiple Choice)
4.9/5
(24)

Find the first five terms of the sequence with the given general term. - an=(1)n9a _ { n } = ( - 1 ) ^ { n - 9 }

(Multiple Choice)
5.0/5
(34)

Expand using the binomial theorem. - (x1)6( x - 1 ) ^ { 6 }

(Multiple Choice)
4.7/5
(36)

Find the sum. - i=254i\sum _ { \mathrm { i } = 2 } ^ { 5 } 4 ^ { \mathrm { i } }

(Multiple Choice)
4.9/5
(33)

Expand using the binomial theorem. - (x+2y)3( x + 2 y ) ^ { 3 }

(Multiple Choice)
4.8/5
(38)

Evaluate the given binomial coefficient. - 5C4{ } _ { 5 } C _ { 4 }

(Multiple Choice)
4.7/5
(33)

Expand using the binomial theorem. - (x3y)4( x - 3 y ) ^ { 4 }

(Multiple Choice)
5.0/5
(28)

Evaluate the given binomial coefficient. - 5C55 \mathrm { C } _ { 5 }

(Multiple Choice)
4.9/5
(43)

Find the indicated partial sum for the given sequence with the given first term and general term. - s6,a1=8,an=an15s _ { 6 } , a _ { 1 } = 8 , a _ { n } = a _ { n } - 1 - 5

(Multiple Choice)
4.9/5
(34)
Showing 101 - 120 of 120
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)