Exam 8: Sequences, Series, and Probability

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Use mathematical induction to prove the property for all positive integers nn . [an]4=a4n\left[ a ^ { n } \right] ^ { 4 } = a ^ { 4 n }

Free
(Essay)
4.7/5
(25)
Correct Answer:
Verified

1) n=1n = 1 :
[a1]4=?a41[a]4=?a4a4=a4\begin{array} { r } { \left[ a ^ { 1 } \right] ^ { 4 } \stackrel { ? } { = } a ^ { 4 \cdot 1 } } \\{ [ a ] ^ { 4 } \stackrel { ? } { = } a ^ { 4 } } \\a ^ { 4 } = a ^ { 4 }\end{array}
The statement is true for n=1n = 1 .
2) Assume [ak]4=a4k\left[ a ^ { k } \right] ^ { 4 } = a ^ { 4 k } . Then,
(a)4[ak]4=(a)4(a4k)[aak]4=a4+4k[ak+1]4=a4(k+1)\begin{aligned}( a ) ^ { 4 } \left[ a ^ { k } \right] ^ { 4 } & = ( a ) ^ { 4 } \left( a ^ { 4 k } \right) \\{ \left[ a \cdot a ^ { k } \right] ^ { 4 } } & = a ^ { 4 + 4 k } \\{ \left[ a ^ { k + 1 } \right] ^ { 4 } } & = a ^ { 4 ( k + 1 ) }\end{aligned}
By mathematical induction, the property is true for all positive values of nn .

Find the probability for the experiment of drawing two marbles (without replacement) from a bag containing four green, six yellow, and five red marbles such that both marbles are yellow.

Free
(Multiple Choice)
4.8/5
(25)
Correct Answer:
Verified

A

Find the indicated nn th term of the geometric sequence. 5 th term: a3=316,a9=365,536a _ { 3 } = - \frac { 3 } { 16 } , a _ { 9 } = - \frac { 3 } { 65,536 }

Free
(Multiple Choice)
4.8/5
(36)
Correct Answer:
Verified

D

Determine the sample space for the experiment. Four coins are flipped and the number of heads observed is recorded.

(Multiple Choice)
4.9/5
(40)

Find the sum. k=131k2+5\sum _ { k = 1 } ^ { 3 } \frac { 1 } { k ^ { 2 } + 5 }

(Multiple Choice)
4.7/5
(27)

Use mathematical induction to prove the following for every positive integer nn . i=1n8(2i1)(2i+1)=8n2n+1\sum _ { i = 1 } ^ { n } \frac { 8 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 8 n } { 2 n + 1 }

(Essay)
4.8/5
(34)

Determine whether the sequence is geometric. If so, find the common ratio. 2,6,18,54,- 2,6 , - 18,54 , \ldots

(Multiple Choice)
4.9/5
(28)

Evaluate: 8P5{ } _ { 8 } P _ { 5 }

(Multiple Choice)
4.7/5
(27)

Write the first five terms of the sequence. (Assume that nn begins with 0 .) an=3n(n+1)!a _ { n } = \frac { 3 ^ { n } } { ( n + 1 ) ! }

(Multiple Choice)
4.8/5
(35)

Find a formula for ana _ { n } for the arithmetic sequence. a3=19,a13=99a _ { 3 } = 19 , a _ { 13 } = 99

(Multiple Choice)
4.9/5
(35)

Use mathematical induction to prove the following for every positive integer nn . i=1n15(2i1)(2i+1)=15n2n+1\sum _ { i = 1 } ^ { n } \frac { 15 } { ( 2 i - 1 ) ( 2 i + 1 ) } = \frac { 15 n } { 2 n + 1 }

(Essay)
4.9/5
(29)

Use mathematical induction to prove the following inequality for all n2n \geq 2 . 123+146+169++123n>n23\frac { 1 } { \sqrt { 23 } } + \frac { 1 } { \sqrt { 46 } } + \frac { 1 } { \sqrt { 69 } } + \ldots + \frac { 1 } { \sqrt { 23 n } } > \frac { \sqrt { n } } { \sqrt { 23 } }

(Essay)
4.9/5
(41)

Find the specified nn th term in the expansion of the binomial. (Write the expansion in descending powers of xx .) (2x3y)8,n=5( 2 x - 3 y ) ^ { 8 } , n = 5

(Multiple Choice)
4.9/5
(26)

Use the Binomial Theorem to expand the following complex number. Write your answer in standard form. (3777i)3\left( - \frac { 3 } { 7 } - \frac { \sqrt { 7 } } { 7 } i \right) ^ { 3 }

(Multiple Choice)
4.9/5
(30)

Find the sum using the formulas for the sums of powers of integers. n=112n3\sum _ { n = 1 } ^ { 12 } n ^ { 3 }

(Multiple Choice)
4.7/5
(31)

Use mathematical induction to prove the following for every positive integer nn . i=1n36i5=3n2(n+1)2(2n2+2n1)\sum _ { i = 1 } ^ { n } 36 i ^ { 5 } = 3 n ^ { 2 } ( n + 1 ) ^ { 2 } \left( 2 n ^ { 2 } + 2 n - 1 \right)

(Essay)
4.9/5
(38)

Find the sum of the integers from 1- 1 to 27 .

(Multiple Choice)
5.0/5
(33)

Use mathematical induction to prove the following for every positive integer nn . i=1n17i(i+1)(i+2)=17n(n+3)4(n+1)(n+2)\sum _ { i = 1 } ^ { n } \frac { 17 } { i ( i + 1 ) ( i + 2 ) } = \frac { 17 n ( n + 3 ) } { 4 ( n + 1 ) ( n + 2 ) }

(Essay)
4.9/5
(40)

Find the sum of the finite geometric sequence. Round to the nearest thousandth. i=06200(1.07)i\sum _ { i = 0 } ^ { 6 } 200 ( 1.07 ) ^ { i }

(Multiple Choice)
4.9/5
(32)

Find the sum of the following infinite geometric series. 14+1316914+2197196- 14 + 13 - \frac { 169 } { 14 } + \frac { 2197 } { 196 } - \ldots

(Multiple Choice)
4.9/5
(38)
Showing 1 - 20 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)