Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . 2sin2x+sinx=12 \sin ^ { 2 } x + \sin x = 1

Free
(Multiple Choice)
4.8/5
(27)
Correct Answer:
Verified

D

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=1161\sin u = \frac { 11 } { 61 } and cosv=4041\cos v = - \frac { 40 } { 41 } . (Both uu and vv are in Quadrant II.)

Free
(Multiple Choice)
4.7/5
(46)
Correct Answer:
Verified

C

If x=2cotθx = 2 \cot \theta , use trigonometric substitution to write 4+x2\sqrt { 4 + x ^ { 2 } } as a trigonometric function of θ\theta , where 0<θ<π0 < \theta < \pi .

Free
(Multiple Choice)
5.0/5
(29)
Correct Answer:
Verified

B

Determine which of the following are trigonometric identities. I. sin(y)sin(x)cos(y)+cos(x)+cos(y)cos(x)sin(y)+sin(x)=0\frac { \sin ( y ) - \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) - \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 0 II. sin(y)+sin(x)cos(y)+cos(x)+cos(y)+cos(x)sin(y)+sin(x)=1\frac { \sin ( y ) + \sin ( x ) } { \cos ( y ) + \cos ( x ) } + \frac { \cos ( y ) + \cos ( x ) } { \sin ( y ) + \sin ( x ) } = 1 III. sin(y)+cos(x)sin(y)cos(x)=sin(x)+cos(y)\frac { \sin ( y ) + \cos ( x ) } { \sin ( y ) \cos ( x ) } = \sin ( x ) + \cos ( y )

(Multiple Choice)
4.9/5
(41)

Find the exact value of cos(u+v)\cos ( u + v ) given that sinu=513\sin u = \frac { 5 } { 13 } and cosv=45\cos v = - \frac { 4 } { 5 } . (Both uu and vv are in Quadrant II.)

(Multiple Choice)
4.9/5
(35)

Which of the following is a solution to the given equation? secx2=0\sec x - 2 = 0

(Multiple Choice)
4.9/5
(40)

Solve the following equation. csc2(x)4=0\csc ^ { 2 } ( x ) - 4 = 0

(Multiple Choice)
4.7/5
(29)

Verify the identity shown below. 1sinθ1+sinθ=2sec2θ2secθtanθ1\frac { 1 - \sin \theta } { 1 + \sin \theta } = 2 \sec ^ { 2 } \theta - 2 \sec \theta \tan \theta - 1

(Essay)
4.9/5
(36)

Determine which of the following are trigonometric identities. I. cos(t)cos(s)sin(t)+sin(s)+sin(t)sin(s)cos(t)+cos(s)=0\frac { \cos ( \mathrm { t } ) - \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) - \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 0 II. cos(t)+cos(s)sin(t)+sin(s)+sin(t)+sin(s)cos(t)+cos(s)=1\frac { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } + \frac { \sin ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) + \cos ( \mathrm { s } ) } = 1 III. cos(t)+sin(s)cos(t)sin(s)=cos(s)+sin(t)\frac { \cos ( \mathrm { t } ) + \sin ( \mathrm { s } ) } { \cos ( \mathrm { t } ) \sin ( \mathrm { s } ) } = \cos ( \mathrm { s } ) + \sin ( \mathrm { t } )

(Multiple Choice)
4.9/5
(36)

Add or subtract as indicated; then use fundamental identities to simplify the expression below and determine which of the following is not equivalent. sinx+1+1sinx1\sin x + 1 + \frac { 1 } { \sin x - 1 }

(Multiple Choice)
4.9/5
(37)

Solve the multi-angle equation below. sin(2x)=22\sin ( 2 x ) = - \frac { \sqrt { 2 } } { 2 }

(Multiple Choice)
4.9/5
(37)

Use the trigonometric substitution x=8sec(θ)x = 8 \sec ( \theta ) to write the expression x264\sqrt { x ^ { 2 } - 64 } as a trigonometric function of θ\theta , where 0<θ<π20 < \theta < \frac { \pi } { 2 } .

(Multiple Choice)
4.7/5
(33)

Verify the identity shown below. sec2(π2y)1=cot2y\sec ^ { 2 } \left( \frac { \pi } { 2 } - y \right) - 1 = \cot ^ { 2 } y

(Essay)
4.8/5
(33)

Write the given expression as the sine of an angle. sin75cos35sin35cos75\sin 75 ^ { \circ } \cos 35 ^ { \circ } - \sin 35 ^ { \circ } \cos 75 ^ { \circ }

(Multiple Choice)
4.9/5
(34)

Write the given expression as the sine of an angle. sin85cos50+sin50cos85\sin 85 ^ { \circ } \cos 50 ^ { \circ } + \sin 50 ^ { \circ } \cos 85 ^ { \circ }

(Multiple Choice)
4.9/5
(36)

Verify the identity shown below. (1+cot2θ)tan2θ=sec2θ\left( 1 + \cot ^ { 2 } \theta \right) \tan ^ { 2 } \theta = \sec ^ { 2 } \theta

(Essay)
4.7/5
(38)

Find the exact solutions of the given equation in the interval [0,2π)[ 0,2 \pi ) . sin2x=sinx\sin 2 x = \sin x

(Multiple Choice)
4.9/5
(35)

Use the figure below to determine the exact value of the given function. Use the figure below to determine the exact value of the given function.

(Multiple Choice)
4.9/5
(36)

Verify the identity shown below. tanα+cotβtanαcotβ=tanβ+cotα\frac { \tan \alpha + \cot \beta } { \tan \alpha \cot \beta } = \tan \beta + \cot \alpha

(Essay)
4.9/5
(47)

Write the given expression as the cosine of an angle. cos30cos50+sin30sin50\cos 30 ^ { \circ } \cos 50 ^ { \circ } + \sin 30 ^ { \circ } \sin 50 ^ { \circ }

(Multiple Choice)
4.9/5
(39)
Showing 1 - 20 of 40
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)