Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Find the expression as the sine or cosine of an angle. cos9xcos8y+sin9xsin8y\cos 9 x \cos 8 y + \sin 9 x \sin 8 y

Free
(Multiple Choice)
4.8/5
(28)
Correct Answer:
Verified

C

Given a=9,b=12, and c=7,a = 9 , b = 12 , \text { and } c = 7 , , use the Law of Cosines to solve the triangle for the value of B. Round answer to two decimal places.

Free
(Multiple Choice)
4.9/5
(36)
Correct Answer:
Verified

A

Evaluate the following expression. (1+sinα)(1sinα)( 1 + \sin \alpha ) ( 1 - \sin \alpha )

Free
(Multiple Choice)
4.8/5
(29)
Correct Answer:
Verified

C

Determine whether the Law of Sines or the Law of Cosines is needed to solve the tri- angle. Then solve the triangle. Round your answer to two decimal places. a=154,B=10,C=5a = 154 , B = 10 ^ { \circ } , C = 5 ^ { \circ }

(Multiple Choice)
4.8/5
(39)

Perform the multiplication and use the fundamental identities to simplify. (sinx+cosx)2( \sin x + \cos x ) ^ { 2 }

(Multiple Choice)
4.7/5
(30)

Evaluate the expression. tana2\tan \frac { a } { 2 }

(Multiple Choice)
4.7/5
(29)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) . sinx2=cosx2\sin x - 2 = \cos x - 2

(Multiple Choice)
4.8/5
(31)

Use a graphing utility to graph the function. Use a graphing utility to graph the function.

(Multiple Choice)
4.8/5
(34)

Solve the following equation. 9sec2x12=09 \sec ^ { 2 } x - 12 = 0

(Multiple Choice)
4.9/5
(34)

Use the given values to evaluate (if possible) three trigonometric functions cosx, cscx, tanx. sinx=12\sin x = \frac { 1 } { 2 }

(Multiple Choice)
4.9/5
(33)

Use the trigonometric substitution to select the algebraic expression as a trigonomet- ric function of θ\theta , where π2<θ<π2.- \frac { \pi } { 2 } < \theta < \frac { \pi } { 2 } . . Then find sinθ and cosθ\sin \theta \text { and } \cos \theta 2=4x2,x=2sinθ2 = \sqrt { 4 - x ^ { 2 } } , x = 2 \sin \theta

(Multiple Choice)
4.9/5
(41)

Use the formula asinBθ+bcosBθ=a2+b2sin(Bθ+C)\operatorname { asin } B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where Cˉ=arctan(b/a),a>0\bar { C } = \arctan ( b / a ) , a > 0 to find the trigonometric expression in the following forms. y=(B\theta+C) 2\theta+7\theta

(Multiple Choice)
4.8/5
(39)

Use the cofunction identities to evaluate the expression without using a calculator. tan271+cot218sec272csc219\tan ^ { 2 } 71 + \cot ^ { 2 } 18 - \sec ^ { 2 } 72 - \csc ^ { 2 } 19

(Multiple Choice)
4.9/5
(33)

Use the given values to evaluate (if possible) three trigonometric functions sinx, cosx, cotx. cscx=257,tanx=724\csc x = \frac { 25 } { 7 } , \tan x = \frac { 7 } { 24 }

(Multiple Choice)
4.8/5
(46)

Solve the following equation. 6sec2x8=06 \sec ^ { 2 } x - 8 = 0

(Multiple Choice)
4.9/5
(34)

A weight is attached to a spring suspended vertically from a ceiling. When a driving force is applied to the system, the weight moves vertically from its equilibrium position, and this Motion is modeled by where is the distance from equilibrium (in feet) and is the time (in seconds). y=14sin2t+13cos2ty = \frac { 1 } { 4 } \sin 2 t + \frac { 1 } { 3 } \cos 2 t Use the identity asinBθ+bcosBθ=a2+b2sin(Bθ+C)a \sin B \theta + b \cos B \theta = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B \theta + C ) where C=arctan(b/a),a>0C = \arctan ( b / a ) , a > 0 , to write the model in the form y=a2+b2sin(Bt+C)y = \sqrt { a ^ { 2 } + b ^ { 2 } } \sin ( B t + C ) .

(Multiple Choice)
4.8/5
(33)

Use the law of Cosines to solve the given triangle. Round your answer to two decimal places. a=13,b=17,c=23a = 13 , b = 17 , c = 23

(Multiple Choice)
4.9/5
(26)

Find all solutions of the following equation in the interval [0,2π)[ 0,2 \pi ) 4sinx+cscx=04 \sin x + \csc x = 0

(Multiple Choice)
4.8/5
(36)

Use a calculator to calculate the value of θ\theta from the given identity. sin(θ)=sinθ,θ=255\sin ( - \theta ) = - \sin \theta , \theta = 255 ^ { \circ }

(Multiple Choice)
4.8/5
(39)

Use a calculator to calculate the value of θ\theta from the given identity. sin(θ)=sinθ,θ=251\sin ( - \theta ) = - \sin \theta , \theta = 251 ^ { \circ }

(Multiple Choice)
4.8/5
(36)
Showing 1 - 20 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)