Exam 5: Analytic Trigonometry

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

Evaluate the following expression. tan2θsecθ\frac { \tan ^ { 2 } \theta } { \sec \theta }

(Multiple Choice)
4.9/5
(42)

Find the expression as the sine or cosine of an angle. cos6xcos3y+sin6xsin3y\cos 6 x \cos 3 y + \sin 6 x \sin 3 y

(Multiple Choice)
4.7/5
(43)

Use the given values to evaluate (if possible) three trigonometric functions cosecθ\operatorname { cosec } \theta tanθ,cosθ\tan \theta , \cos \theta sinθ=3,cotθ=0\sin \theta = - 3 , \quad \cot \theta = 0

(Multiple Choice)
4.8/5
(48)

Use the trigonometric substitution to select the algebraic expression as a trigonomet-  ric function of θ, where 0<θ<π2\text { ric function of } \theta \text {, where } 0 < \theta < \frac { \pi } { 2 } \text {. } 16x2+25,4x=5tanθ\sqrt { 16 x ^ { 2 } + 25 } , 4 x = 5 \tan \theta

(Multiple Choice)
4.8/5
(39)

Use the figure to find the exact value of the trigonometric function. Use the figure to find the exact value of the trigonometric function.

(Multiple Choice)
4.9/5
(35)

Use the sum-to-product formulas to select the sum or difference as a product. sin8θ+sin6θ\sin 8 \theta + \sin 6 \theta

(Multiple Choice)
4.8/5
(31)

Use the law of Cosines to solve the given triangle. Round your answer to two decimal places. a=11,b=15,c=21a = 11 , b = 15 , c = 21

(Multiple Choice)
4.9/5
(38)

Use inverse functions where needed to find all solutions (if they exist) of the given equation on the interval [0,2π)[ 0,2 \pi ) cos2x5sinx+5=0\cos ^ { 2 } x - 5 \sin x + 5 = 0

(Multiple Choice)
4.7/5
(33)

Evaluate the expression. cos8α\cos 8 \alpha

(Multiple Choice)
4.9/5
(39)

Evaluate the following expression. (1+sinα)(1sinα)( 1 + \sin \alpha ) ( 1 - \sin \alpha )

(Multiple Choice)
4.9/5
(38)

Use the trigonometric substitution to select the algebraic expression as a trigonometric function of  θ, where 0<θ<π2\text { } \theta \text {, where } 0 < \theta < \frac { \pi } { 2 } \text {. } 25x2+36,5x=6tanθ\sqrt { 25 x ^ { 2 } + 36 } , 5 x = 6 \tan \theta

(Multiple Choice)
4.8/5
(35)

Use the half-angle formulas to determine the exact value of the given trigonometric expression. cot3π8\cot \frac { 3 \pi } { 8 }

(Multiple Choice)
5.0/5
(34)

The table shows the average daily high temperatures in Houston H (in degrees Fahr- enheit) for month t, with t=1t = 1 corresponding to January. Month ,t Houston, H 1 62.4 2 66.4 3 73.4 4 79.4 5 85.4 6 90.4 7 93.4 8 93.5 9 89.4 10 82.4 11 72.4 12 64.4 Select the correct scatter plot from the above data.

(Multiple Choice)
4.8/5
(40)

Determine whether the Law of Sines or the Law of Cosines is needed to solve the tri- angle. Then solve the triangle. a=17,b=19,C=65a = 17 , b = 19 , C = 65 ^ { \circ }

(Multiple Choice)
4.8/5
(35)

Use the Heron's formula to find the area of the triangle. Round your answer upto two decimal places. a=1,b=12,c=35a = 1 , b = \frac { 1 } { 2 } , c = \frac { 3 } { 5 }

(Multiple Choice)
4.7/5
(38)

Use a graphing utility to select the correct graph y1 and y2y _ { 1 } \text { and } y _ { 2 } in the same viewing window. Use the graphs to determine whether y1=y2y _ { 1 } = y _ { 2 } Explain your reasoning. y1=cos(x+6),y2=cosx+cos6y _ { 1 } = \cos ( x + 6 ) , y _ { 2 } = \cos x + \cos 6

(Multiple Choice)
4.9/5
(32)

Evaluate the following expression. 3+3sin4θcos4θ+3cos4θ1+sin4θ\frac { 3 + 3 \sin 4 \theta } { \cos 4 \theta } + \frac { 3 \cos 4 \theta } { 1 + \sin 4 \theta }

(Multiple Choice)
5.0/5
(43)

Determine whether the Law of Sines or the Law of Cosines is needed to solve the tri- angle. Then solve the triangle. a=17,b=19,C=60a = 17 , b = 19 , C = 60 ^ { \circ }

(Multiple Choice)
4.7/5
(33)

Given a=8,b=7, and c=6a = 8 , b = 7 , \text { and } c = 6 , use the Law of Cosines to solve the triangle for the value of C. Round answer to two decimal places.  Given  a = 8 , b = 7 , \text { and } c = 6  , use the Law of Cosines to solve the triangle for the value of C. Round answer to two decimal places.

(Multiple Choice)
4.9/5
(31)

Determine the angle θ\theta in the design of the streetlight shown in the following figure. a=4,b=512,c=3a = 4 , b = 5 \frac { 1 } { 2 } , c = 3  Determine the angle  \theta  in the design of the streetlight shown in the following figure.  a = 4 , b = 5 \frac { 1 } { 2 } , c = 3

(Multiple Choice)
5.0/5
(41)
Showing 41 - 60 of 67
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)