Exam 1: Introduction

arrow
  • Select Tags
search iconSearch Question
flashcardsStudy Flashcards
  • Select Tags

 Vector V1 is (5i+7j3k), vector V2 is (7i+2j+14k), and vector V3 is (i2j+5k). The scalar triple \text { Vector } V _ { 1 } \text { is } ( 5 i + 7 j - 3 k ) \text {, vector } V _ { 2 } \text { is } ( 7 i + 2 j + 14 k ) \text {, and vector } V _ { 3 } \text { is } ( i - 2 j + 5 k ) \text {. The scalar triple } product (V2×V3) is \cdot \left( V _ { 2 } \times V _ { 3 } \right) \text { is }

Free
(Multiple Choice)
4.9/5
(35)
Correct Answer:
Verified

D

Vector V1 is (5i+7j3k) and V2=(7i+2j+14k)V _ { 1 } \text { is } ( 5 i + 7 j - 3 k ) \text { and } V _ { 2 } = ( 7 i + 2 j + 14 k ) ). The scalar product of these two vectors is:

Free
(Multiple Choice)
4.8/5
(39)
Correct Answer:
Verified

A

Force FF (see figure) is applied at C and is directed toward A. Its magnitude is F=15 N.AF = 15 \mathrm {~N} . \mathrm { A } unit vector along line CA is:  Force  F  (see figure) is applied at C and is directed toward A. Its magnitude is  F = 15 \mathrm {~N} . \mathrm { A }  unit vector along line CA is:

Free
(Multiple Choice)
4.9/5
(34)
Correct Answer:
Verified

A

Vectors V1 and V2V _ { 1 } \text { and } V _ { 2 } are orthogonal. If  If V1 is (5i+7j3k) and V2=(7i+Vyj+14k)\text { If } V _ { 1 } \text { is } ( 5 i + 7 j - 3 k ) \text { and } V _ { 2 } = \left( 7 i + V _ { y } j + 14 k \right) ), then component VyV _ { y } in vector V2V _ { 2 } is:

(Multiple Choice)
4.8/5
(39)

magnitudes of two vectors Va and Vb are 5 and 7, respectively, and the magnitude of their sum Vs is V _ { a } \text { and } V _ { b } \text { are } 5 \text { and } 7 \text {, respectively, and the magnitude of their sum } V _ { s } \text { is } 10 (i.e., Va=5,Vb=7,Vs=10 ). The angles θ and β in the figure below are: 10 \text { (i.e., } \left| V _ { a } \right| = 5 , \left| V _ { b } \right| = 7 , \left| V _ { s } \right| = 10 \text { ). The angles } \theta \text { and } \beta \text { in the figure below are: }  magnitudes of two vectors  V _ { a } \text { and } V _ { b } \text { are } 5 \text { and } 7 \text {, respectively, and the magnitude of their sum } V _ { s } \text { is }   10 \text { (i.e., } \left| V _ { a } \right| = 5 , \left| V _ { b } \right| = 7 , \left| V _ { s } \right| = 10 \text { ). The angles } \theta \text { and } \beta \text { in the figure below are: }

(Multiple Choice)
4.9/5
(37)

 The direction cosines of the vector (4i8j+7k) are: \text { The direction cosines of the vector } ( 4 \boldsymbol { i } - 8 \boldsymbol { j } + 7 \boldsymbol { k } ) \text { are: }

(Multiple Choice)
4.9/5
(29)

 Vector V1 is (5i+7j3k) and vector V2 is (7i+2j+14k). The component of V1 parallel to the line of \text { Vector } V _ { 1 } \text { is } ( 5 i + 7 j - 3 k ) \text { and vector } V _ { 2 } \text { is } ( 7 i + 2 j + 14 k ) \text {. The component of } V _ { 1 } \text { parallel to the line of } action of vector V2V _ { 2 } is:

(Multiple Choice)
4.9/5
(30)

Vector V1 is (5i+7j3k) and vector V2 is (7i+2j+14k)V _ { 1 } \text { is } ( 5 \boldsymbol { i } + 7 \boldsymbol { j } - 3 \boldsymbol { k } ) \text { and vector } \boldsymbol { V } _ { 2 } \text { is } ( 7 \boldsymbol { i } + 2 \boldsymbol { j } + 14 \boldsymbol { k } ) ). The component of V1V _ { 1 } perpendicular to the line of action of vector V2V _ { 2 } is:

(Multiple Choice)
4.9/5
(37)

sum of orthogonal vectors V1 and V2 is (4i8j+7k)V _ { 1 } \text { and } V _ { 2 } \text { is } ( 4 i - 8 j + 7 k ) . A unit vector along V1V _ { 1 } is (0.635i+0.773j)( 0.635 i + 0.773 j ) Vector V1V _ { 1 } is:

(Multiple Choice)
4.9/5
(37)

Vector V1 is (5i+7j3k) and V2=(7i+2j+14k)V _ { 1 } \text { is } ( 5 i + 7 j - 3 k ) \text { and } V _ { 2 } = ( 7 i + 2 j + 14 k ) ). The vector product of these two vectors is:

(Multiple Choice)
4.8/5
(39)
close modal

Filters

  • Essay(0)
  • Multiple Choice(0)
  • Short Answer(0)
  • True False(0)
  • Matching(0)